Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logbpw2m1 Structured version   Visualization version   GIF version

Theorem logbpw2m1 42361
Description: The floor of the binary logarithm of 2 to the power of a positive integer minus 1 is equal to the integer minus 1. (Contributed by AV, 31-May-2020.)
Assertion
Ref Expression
logbpw2m1 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))

Proof of Theorem logbpw2m1
StepHypRef Expression
1 2rp 11837 . . . . 5 2 ∈ ℝ+
21a1i 11 . . . 4 (𝐼 ∈ ℕ → 2 ∈ ℝ+)
3 2nn0 11309 . . . . . . . 8 2 ∈ ℕ0
43a1i 11 . . . . . . 7 (𝐼 ∈ ℕ → 2 ∈ ℕ0)
5 nnnn0 11299 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℕ0)
64, 5nn0expcld 13031 . . . . . 6 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ0)
7 nnge1 11046 . . . . . . 7 (𝐼 ∈ ℕ → 1 ≤ 𝐼)
8 2re 11090 . . . . . . . . . 10 2 ∈ ℝ
98a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → 2 ∈ ℝ)
10 1zzd 11408 . . . . . . . . 9 (𝐼 ∈ ℕ → 1 ∈ ℤ)
11 nnz 11399 . . . . . . . . 9 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
12 1lt2 11194 . . . . . . . . . 10 1 < 2
1312a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → 1 < 2)
149, 10, 11, 13leexp2d 13039 . . . . . . . 8 (𝐼 ∈ ℕ → (1 ≤ 𝐼 ↔ (2↑1) ≤ (2↑𝐼)))
15 2cn 11091 . . . . . . . . . . 11 2 ∈ ℂ
16 exp1 12866 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑1) = 2)
1715, 16ax-mp 5 . . . . . . . . . 10 (2↑1) = 2
1817a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → (2↑1) = 2)
1918breq1d 4663 . . . . . . . 8 (𝐼 ∈ ℕ → ((2↑1) ≤ (2↑𝐼) ↔ 2 ≤ (2↑𝐼)))
2014, 19bitrd 268 . . . . . . 7 (𝐼 ∈ ℕ → (1 ≤ 𝐼 ↔ 2 ≤ (2↑𝐼)))
217, 20mpbid 222 . . . . . 6 (𝐼 ∈ ℕ → 2 ≤ (2↑𝐼))
22 nn0ge2m1nn 11360 . . . . . 6 (((2↑𝐼) ∈ ℕ0 ∧ 2 ≤ (2↑𝐼)) → ((2↑𝐼) − 1) ∈ ℕ)
236, 21, 22syl2anc 693 . . . . 5 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℕ)
2423nnrpd 11870 . . . 4 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℝ+)
25 1ne2 11240 . . . . . 6 1 ≠ 2
2625necomi 2848 . . . . 5 2 ≠ 1
2726a1i 11 . . . 4 (𝐼 ∈ ℕ → 2 ≠ 1)
28 relogbcl 24511 . . . 4 ((2 ∈ ℝ+ ∧ ((2↑𝐼) − 1) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
292, 24, 27, 28syl3anc 1326 . . 3 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
3029flcld 12599 . 2 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ)
31 peano2zm 11420 . . 3 (𝐼 ∈ ℤ → (𝐼 − 1) ∈ ℤ)
3211, 31syl 17 . 2 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℤ)
33 2z 11409 . . . . . . 7 2 ∈ ℤ
34 uzid 11702 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3533, 34ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
36 nnlogbexp 24519 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ (𝐼 − 1) ∈ ℤ) → (2 logb (2↑(𝐼 − 1))) = (𝐼 − 1))
3735, 32, 36sylancr 695 . . . . 5 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) = (𝐼 − 1))
3837fveq2d 6195 . . . 4 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) = (⌊‘(𝐼 − 1)))
39 flid 12609 . . . . 5 ((𝐼 − 1) ∈ ℤ → (⌊‘(𝐼 − 1)) = (𝐼 − 1))
4032, 39syl 17 . . . 4 (𝐼 ∈ ℕ → (⌊‘(𝐼 − 1)) = (𝐼 − 1))
4138, 40eqtrd 2656 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) = (𝐼 − 1))
42 2nn 11185 . . . . . . . 8 2 ∈ ℕ
4342a1i 11 . . . . . . 7 (𝐼 ∈ ℕ → 2 ∈ ℕ)
44 nnm1nn0 11334 . . . . . . 7 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℕ0)
4543, 44nnexpcld 13030 . . . . . 6 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℕ)
4645nnrpd 11870 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℝ+)
47 relogbcl 24511 . . . . 5 ((2 ∈ ℝ+ ∧ (2↑(𝐼 − 1)) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑(𝐼 − 1))) ∈ ℝ)
482, 46, 27, 47syl3anc 1326 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) ∈ ℝ)
49 pw2m1lepw2m1 42310 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))
5035a1i 11 . . . . . 6 (𝐼 ∈ ℕ → 2 ∈ (ℤ‘2))
51 logbleb 24521 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ (2↑(𝐼 − 1)) ∈ ℝ+ ∧ ((2↑𝐼) − 1) ∈ ℝ+) → ((2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1) ↔ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))))
5250, 46, 24, 51syl3anc 1326 . . . . 5 (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1) ↔ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))))
5349, 52mpbid 222 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
54 flwordi 12613 . . . 4 (((2 logb (2↑(𝐼 − 1))) ∈ ℝ ∧ (2 logb ((2↑𝐼) − 1)) ∈ ℝ ∧ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))) → (⌊‘(2 logb (2↑(𝐼 − 1)))) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5548, 29, 53, 54syl3anc 1326 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5641, 55eqbrtrrd 4677 . 2 (𝐼 ∈ ℕ → (𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5743, 5nnexpcld 13030 . . . . . . . . 9 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ)
5857nnnn0d 11351 . . . . . . . 8 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ0)
5958, 21, 22syl2anc 693 . . . . . . 7 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℕ)
6059nnrpd 11870 . . . . . 6 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℝ+)
612, 60, 27, 28syl3anc 1326 . . . . 5 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
6261flcld 12599 . . . 4 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ)
6362zred 11482 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℝ)
64 nnre 11027 . . . . 5 (𝐼 ∈ ℕ → 𝐼 ∈ ℝ)
65 peano2rem 10348 . . . . 5 (𝐼 ∈ ℝ → (𝐼 − 1) ∈ ℝ)
6664, 65syl 17 . . . 4 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℝ)
67 peano2re 10209 . . . 4 ((𝐼 − 1) ∈ ℝ → ((𝐼 − 1) + 1) ∈ ℝ)
6866, 67syl 17 . . 3 (𝐼 ∈ ℕ → ((𝐼 − 1) + 1) ∈ ℝ)
69 flle 12600 . . . 4 ((2 logb ((2↑𝐼) − 1)) ∈ ℝ → (⌊‘(2 logb ((2↑𝐼) − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
7029, 69syl 17 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
7157nnrpd 11870 . . . . 5 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ+)
72 relogbcl 24511 . . . . 5 ((2 ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑𝐼)) ∈ ℝ)
732, 71, 27, 72syl3anc 1326 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) ∈ ℝ)
7457nnred 11035 . . . . . 6 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ)
7574ltm1d 10956 . . . . 5 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) < (2↑𝐼))
76 logblt 24522 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ ((2↑𝐼) − 1) ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+) → (((2↑𝐼) − 1) < (2↑𝐼) ↔ (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼))))
7750, 24, 71, 76syl3anc 1326 . . . . 5 (𝐼 ∈ ℕ → (((2↑𝐼) − 1) < (2↑𝐼) ↔ (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼))))
7875, 77mpbid 222 . . . 4 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼)))
7964leidd 10594 . . . . 5 (𝐼 ∈ ℕ → 𝐼𝐼)
80 nnlogbexp 24519 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℤ) → (2 logb (2↑𝐼)) = 𝐼)
8135, 11, 80sylancr 695 . . . . 5 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) = 𝐼)
82 nncn 11028 . . . . . 6 (𝐼 ∈ ℕ → 𝐼 ∈ ℂ)
83 npcan1 10455 . . . . . 6 (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼)
8482, 83syl 17 . . . . 5 (𝐼 ∈ ℕ → ((𝐼 − 1) + 1) = 𝐼)
8579, 81, 843brtr4d 4685 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) ≤ ((𝐼 − 1) + 1))
8629, 73, 68, 78, 85ltletrd 10197 . . 3 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) < ((𝐼 − 1) + 1))
8763, 29, 68, 70, 86lelttrd 10195 . 2 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1))
88 zgeltp1eq 41318 . . 3 (((⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ ∧ (𝐼 − 1) ∈ ℤ) → (((𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))) ∧ (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1)) → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1)))
8988imp 445 . 2 ((((⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ ∧ (𝐼 − 1) ∈ ℤ) ∧ ((𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))) ∧ (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1))) → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))
9030, 32, 56, 87, 89syl22anc 1327 1 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  +crp 11832  cfl 12591  cexp 12860   logb clogb 24502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-logb 24503
This theorem is referenced by:  fllog2  42362  blenpw2m1  42373
  Copyright terms: Public domain W3C validator