MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1 Structured version   Visualization version   Unicode version

Theorem odf1 17979
Description: The multiples of an element with infinite order form an infinite cyclic subgroup of  G. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odf1.1  |-  X  =  ( Base `  G
)
odf1.2  |-  O  =  ( od `  G
)
odf1.3  |-  .x.  =  (.g
`  G )
odf1.4  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
Assertion
Ref Expression
odf1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( O `  A )  =  0  <-> 
F : ZZ -1-1-> X
) )
Distinct variable groups:    x, A    x, G    x, O    x,  .x.    x, X
Allowed substitution hint:    F( x)

Proof of Theorem odf1
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odf1.1 . . . . . . . 8  |-  X  =  ( Base `  G
)
2 odf1.3 . . . . . . . 8  |-  .x.  =  (.g
`  G )
31, 2mulgcl 17559 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  ZZ  /\  A  e.  X )  ->  (
x  .x.  A )  e.  X )
433expa 1265 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  x  e.  ZZ )  /\  A  e.  X
)  ->  ( x  .x.  A )  e.  X
)
54an32s 846 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  ZZ )  ->  ( x  .x.  A )  e.  X
)
6 odf1.4 . . . . 5  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
75, 6fmptd 6385 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  F : ZZ --> X )
87adantr 481 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  ->  F : ZZ
--> X )
9 oveq1 6657 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  .x.  A )  =  ( y  .x.  A ) )
10 ovex 6678 . . . . . . . . 9  |-  ( x 
.x.  A )  e. 
_V
119, 6, 10fvmpt3i 6287 . . . . . . . 8  |-  ( y  e.  ZZ  ->  ( F `  y )  =  ( y  .x.  A ) )
12 oveq1 6657 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  .x.  A )  =  ( z  .x.  A ) )
1312, 6, 10fvmpt3i 6287 . . . . . . . 8  |-  ( z  e.  ZZ  ->  ( F `  z )  =  ( z  .x.  A ) )
1411, 13eqeqan12d 2638 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( F `  y )  =  ( F `  z )  <-> 
( y  .x.  A
)  =  ( z 
.x.  A ) ) )
1514adantl 482 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( F `  y )  =  ( F `  z )  <->  ( y  .x.  A )  =  ( z  .x.  A ) ) )
16 simplr 792 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( O `  A )  =  0 )
1716breq1d 4663 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( O `  A )  ||  ( y  -  z
)  <->  0  ||  (
y  -  z ) ) )
18 odf1.2 . . . . . . . . . 10  |-  O  =  ( od `  G
)
19 eqid 2622 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
201, 18, 2, 19odcong 17968 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( O `  A )  ||  ( y  -  z
)  <->  ( y  .x.  A )  =  ( z  .x.  A ) ) )
21203expa 1265 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  -> 
( ( O `  A )  ||  (
y  -  z )  <-> 
( y  .x.  A
)  =  ( z 
.x.  A ) ) )
2221adantlr 751 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( O `  A )  ||  ( y  -  z
)  <->  ( y  .x.  A )  =  ( z  .x.  A ) ) )
23 zsubcl 11419 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  z  e.  ZZ )  ->  ( y  -  z
)  e.  ZZ )
2423adantl 482 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( y  -  z )  e.  ZZ )
25 0dvds 15002 . . . . . . . 8  |-  ( ( y  -  z )  e.  ZZ  ->  (
0  ||  ( y  -  z )  <->  ( y  -  z )  =  0 ) )
2624, 25syl 17 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( 0 
||  ( y  -  z )  <->  ( y  -  z )  =  0 ) )
2717, 22, 263bitr3d 298 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( (
y  .x.  A )  =  ( z  .x.  A )  <->  ( y  -  z )  =  0 ) )
28 zcn 11382 . . . . . . . 8  |-  ( y  e.  ZZ  ->  y  e.  CC )
29 zcn 11382 . . . . . . . 8  |-  ( z  e.  ZZ  ->  z  e.  CC )
30 subeq0 10307 . . . . . . . 8  |-  ( ( y  e.  CC  /\  z  e.  CC )  ->  ( ( y  -  z )  =  0  <-> 
y  =  z ) )
3128, 29, 30syl2an 494 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( y  -  z )  =  0  <-> 
y  =  z ) )
3231adantl 482 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( (
y  -  z )  =  0  <->  y  =  z ) )
3315, 27, 323bitrd 294 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( F `  y )  =  ( F `  z )  <->  y  =  z ) )
3433biimpd 219 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
3534ralrimivva 2971 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  ->  A. y  e.  ZZ  A. z  e.  ZZ  ( ( F `
 y )  =  ( F `  z
)  ->  y  =  z ) )
36 dff13 6512 . . 3  |-  ( F : ZZ -1-1-> X  <->  ( F : ZZ --> X  /\  A. y  e.  ZZ  A. z  e.  ZZ  ( ( F `
 y )  =  ( F `  z
)  ->  y  =  z ) ) )
378, 35, 36sylanbrc 698 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  ->  F : ZZ
-1-1-> X )
381, 18, 2, 19odid 17957 . . . . . 6  |-  ( A  e.  X  ->  (
( O `  A
)  .x.  A )  =  ( 0g `  G ) )
391, 19, 2mulg0 17546 . . . . . 6  |-  ( A  e.  X  ->  (
0  .x.  A )  =  ( 0g `  G ) )
4038, 39eqtr4d 2659 . . . . 5  |-  ( A  e.  X  ->  (
( O `  A
)  .x.  A )  =  ( 0  .x. 
A ) )
4140ad2antlr 763 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( ( O `  A )  .x.  A )  =  ( 0  .x.  A ) )
421, 18odcl 17955 . . . . . . 7  |-  ( A  e.  X  ->  ( O `  A )  e.  NN0 )
4342ad2antlr 763 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( O `  A )  e.  NN0 )
4443nn0zd 11480 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( O `  A )  e.  ZZ )
45 oveq1 6657 . . . . . 6  |-  ( x  =  ( O `  A )  ->  (
x  .x.  A )  =  ( ( O `
 A )  .x.  A ) )
4645, 6, 10fvmpt3i 6287 . . . . 5  |-  ( ( O `  A )  e.  ZZ  ->  ( F `  ( O `  A ) )  =  ( ( O `  A )  .x.  A
) )
4744, 46syl 17 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( F `  ( O `  A
) )  =  ( ( O `  A
)  .x.  A )
)
48 0zd 11389 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  0  e.  ZZ )
49 oveq1 6657 . . . . . 6  |-  ( x  =  0  ->  (
x  .x.  A )  =  ( 0  .x. 
A ) )
5049, 6, 10fvmpt3i 6287 . . . . 5  |-  ( 0  e.  ZZ  ->  ( F `  0 )  =  ( 0  .x. 
A ) )
5148, 50syl 17 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( F `  0 )  =  ( 0  .x.  A
) )
5241, 47, 513eqtr4d 2666 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( F `  ( O `  A
) )  =  ( F `  0 ) )
53 simpr 477 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  F : ZZ
-1-1-> X )
54 f1fveq 6519 . . . 4  |-  ( ( F : ZZ -1-1-> X  /\  ( ( O `  A )  e.  ZZ  /\  0  e.  ZZ ) )  ->  ( ( F `  ( O `  A ) )  =  ( F `  0
)  <->  ( O `  A )  =  0 ) )
5553, 44, 48, 54syl12anc 1324 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( ( F `  ( O `  A ) )  =  ( F `  0
)  <->  ( O `  A )  =  0 ) )
5652, 55mpbid 222 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( O `  A )  =  0 )
5737, 56impbida 877 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( O `  A )  =  0  <-> 
F : ZZ -1-1-> X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    - cmin 10266   NN0cn0 11292   ZZcz 11377    || cdvds 14983   Basecbs 15857   0gc0g 16100   Grpcgrp 17422  .gcmg 17540   odcod 17944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-od 17948
This theorem is referenced by:  odinf  17980  odcl2  17982  zrhchr  30020
  Copyright terms: Public domain W3C validator