![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2uzf1oi | Structured version Visualization version GIF version |
Description: 𝐺 (see om2uz0i 12746) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uzf1oi | ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 7530 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω | |
2 | om2uz.2 | . . . . . 6 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
3 | 2 | fneq1i 5985 | . . . . 5 ⊢ (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω) |
4 | 1, 3 | mpbir 221 | . . . 4 ⊢ 𝐺 Fn ω |
5 | om2uz.1 | . . . . . 6 ⊢ 𝐶 ∈ ℤ | |
6 | 5, 2 | om2uzrani 12751 | . . . . 5 ⊢ ran 𝐺 = (ℤ≥‘𝐶) |
7 | 6 | eqimssi 3659 | . . . 4 ⊢ ran 𝐺 ⊆ (ℤ≥‘𝐶) |
8 | df-f 5892 | . . . 4 ⊢ (𝐺:ω⟶(ℤ≥‘𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ≥‘𝐶))) | |
9 | 4, 7, 8 | mpbir2an 955 | . . 3 ⊢ 𝐺:ω⟶(ℤ≥‘𝐶) |
10 | 5, 2 | om2uzuzi 12748 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) |
11 | eluzelz 11697 | . . . . . . . . 9 ⊢ ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) → (𝐺‘𝑦) ∈ ℤ) | |
12 | 10, 11 | syl 17 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℤ) |
13 | 12 | zred 11482 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℝ) |
14 | 5, 2 | om2uzuzi 12748 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ (ℤ≥‘𝐶)) |
15 | eluzelz 11697 | . . . . . . . . 9 ⊢ ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → (𝐺‘𝑧) ∈ ℤ) | |
16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ ℤ) |
17 | 16 | zred 11482 | . . . . . . 7 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ ℝ) |
18 | lttri3 10121 | . . . . . . 7 ⊢ (((𝐺‘𝑦) ∈ ℝ ∧ (𝐺‘𝑧) ∈ ℝ) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦)))) | |
19 | 13, 17, 18 | syl2an 494 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
20 | ioran 511 | . . . . . 6 ⊢ (¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦))) | |
21 | 19, 20 | syl6bbr 278 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ ¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
22 | nnord 7073 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → Ord 𝑦) | |
23 | nnord 7073 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → Ord 𝑧) | |
24 | ordtri3 5759 | . . . . . . . . 9 ⊢ ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) | |
25 | 22, 23, 24 | syl2an 494 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
26 | 25 | con2bid 344 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) ↔ ¬ 𝑦 = 𝑧)) |
27 | 5, 2 | om2uzlti 12749 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ∈ 𝑧 → (𝐺‘𝑦) < (𝐺‘𝑧))) |
28 | 5, 2 | om2uzlti 12749 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ω ∧ 𝑦 ∈ ω) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) < (𝐺‘𝑦))) |
29 | 28 | ancoms 469 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) < (𝐺‘𝑦))) |
30 | 27, 29 | orim12d 883 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) → ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
31 | 26, 30 | sylbird 250 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ 𝑦 = 𝑧 → ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
32 | 31 | con1d 139 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)) → 𝑦 = 𝑧)) |
33 | 21, 32 | sylbid 230 | . . . 4 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
34 | 33 | rgen2a 2977 | . . 3 ⊢ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧) |
35 | dff13 6512 | . . 3 ⊢ (𝐺:ω–1-1→(ℤ≥‘𝐶) ↔ (𝐺:ω⟶(ℤ≥‘𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) | |
36 | 9, 34, 35 | mpbir2an 955 | . 2 ⊢ 𝐺:ω–1-1→(ℤ≥‘𝐶) |
37 | dff1o5 6146 | . 2 ⊢ (𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ↔ (𝐺:ω–1-1→(ℤ≥‘𝐶) ∧ ran 𝐺 = (ℤ≥‘𝐶))) | |
38 | 36, 6, 37 | mpbir2an 955 | 1 ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ⊆ wss 3574 class class class wbr 4653 ↦ cmpt 4729 ran crn 5115 ↾ cres 5116 Ord word 5722 Fn wfn 5883 ⟶wf 5884 –1-1→wf1 5885 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 ωcom 7065 reccrdg 7505 ℝcr 9935 1c1 9937 + caddc 9939 < clt 10074 ℤcz 11377 ℤ≥cuz 11687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 |
This theorem is referenced by: om2uzisoi 12753 uzrdglem 12756 uzrdgfni 12757 uzrdgsuci 12759 uzenom 12763 fzennn 12767 cardfz 12769 hashgf1o 12770 axdc4uzlem 12782 unbenlem 15612 |
Copyright terms: Public domain | W3C validator |