Proof of Theorem yon2
| Step | Hyp | Ref
| Expression |
| 1 | | yon11.y |
. . . . . . . . 9
⊢ 𝑌 = (Yon‘𝐶) |
| 2 | | yon11.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 3 | | eqid 2622 |
. . . . . . . . 9
⊢
(oppCat‘𝐶) =
(oppCat‘𝐶) |
| 4 | | eqid 2622 |
. . . . . . . . 9
⊢
(HomF‘(oppCat‘𝐶)) =
(HomF‘(oppCat‘𝐶)) |
| 5 | 1, 2, 3, 4 | yonval 16901 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 = (〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶)))) |
| 6 | 5 | fveq2d 6195 |
. . . . . . 7
⊢ (𝜑 → (2nd
‘𝑌) = (2nd
‘(〈𝐶,
(oppCat‘𝐶)〉
curryF (HomF‘(oppCat‘𝐶))))) |
| 7 | 6 | oveqd 6667 |
. . . . . 6
⊢ (𝜑 → (𝑋(2nd ‘𝑌)𝑍) = (𝑋(2nd ‘(〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))))𝑍)) |
| 8 | 7 | fveq1d 6193 |
. . . . 5
⊢ (𝜑 → ((𝑋(2nd ‘𝑌)𝑍)‘𝐹) = ((𝑋(2nd ‘(〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))))𝑍)‘𝐹)) |
| 9 | 8 | fveq1d 6193 |
. . . 4
⊢ (𝜑 → (((𝑋(2nd ‘𝑌)𝑍)‘𝐹)‘𝑊) = (((𝑋(2nd ‘(〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))))𝑍)‘𝐹)‘𝑊)) |
| 10 | | eqid 2622 |
. . . . 5
⊢
(〈𝐶,
(oppCat‘𝐶)〉
curryF (HomF‘(oppCat‘𝐶))) = (〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))) |
| 11 | | yon11.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐶) |
| 12 | 3 | oppccat 16382 |
. . . . . 6
⊢ (𝐶 ∈ Cat →
(oppCat‘𝐶) ∈
Cat) |
| 13 | 2, 12 | syl 17 |
. . . . 5
⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
| 14 | | eqid 2622 |
. . . . . 6
⊢
(SetCat‘ran (Homf ‘𝐶)) = (SetCat‘ran
(Homf ‘𝐶)) |
| 15 | | fvex 6201 |
. . . . . . . 8
⊢
(Homf ‘𝐶) ∈ V |
| 16 | 15 | rnex 7100 |
. . . . . . 7
⊢ ran
(Homf ‘𝐶) ∈ V |
| 17 | 16 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ran
(Homf ‘𝐶) ∈ V) |
| 18 | | ssid 3624 |
. . . . . . 7
⊢ ran
(Homf ‘𝐶) ⊆ ran (Homf
‘𝐶) |
| 19 | 18 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ran
(Homf ‘𝐶) ⊆ ran (Homf
‘𝐶)) |
| 20 | 3, 4, 14, 2, 17, 19 | oppchofcl 16900 |
. . . . 5
⊢ (𝜑 →
(HomF‘(oppCat‘𝐶)) ∈ ((𝐶 ×c
(oppCat‘𝐶)) Func
(SetCat‘ran (Homf ‘𝐶)))) |
| 21 | 3, 11 | oppcbas 16378 |
. . . . 5
⊢ 𝐵 =
(Base‘(oppCat‘𝐶)) |
| 22 | | yon11.h |
. . . . 5
⊢ 𝐻 = (Hom ‘𝐶) |
| 23 | | eqid 2622 |
. . . . 5
⊢
(Id‘(oppCat‘𝐶)) = (Id‘(oppCat‘𝐶)) |
| 24 | | yon11.p |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 25 | | yon11.z |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| 26 | | yon2.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑍)) |
| 27 | | eqid 2622 |
. . . . 5
⊢ ((𝑋(2nd
‘(〈𝐶,
(oppCat‘𝐶)〉
curryF (HomF‘(oppCat‘𝐶))))𝑍)‘𝐹) = ((𝑋(2nd ‘(〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))))𝑍)‘𝐹) |
| 28 | | yon12.w |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ 𝐵) |
| 29 | 10, 11, 2, 13, 20, 21, 22, 23, 24, 25, 26, 27, 28 | curf2val 16870 |
. . . 4
⊢ (𝜑 → (((𝑋(2nd ‘(〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))))𝑍)‘𝐹)‘𝑊) = (𝐹(〈𝑋, 𝑊〉(2nd
‘(HomF‘(oppCat‘𝐶)))〈𝑍, 𝑊〉)((Id‘(oppCat‘𝐶))‘𝑊))) |
| 30 | 9, 29 | eqtrd 2656 |
. . 3
⊢ (𝜑 → (((𝑋(2nd ‘𝑌)𝑍)‘𝐹)‘𝑊) = (𝐹(〈𝑋, 𝑊〉(2nd
‘(HomF‘(oppCat‘𝐶)))〈𝑍, 𝑊〉)((Id‘(oppCat‘𝐶))‘𝑊))) |
| 31 | 30 | fveq1d 6193 |
. 2
⊢ (𝜑 → ((((𝑋(2nd ‘𝑌)𝑍)‘𝐹)‘𝑊)‘𝐺) = ((𝐹(〈𝑋, 𝑊〉(2nd
‘(HomF‘(oppCat‘𝐶)))〈𝑍, 𝑊〉)((Id‘(oppCat‘𝐶))‘𝑊))‘𝐺)) |
| 32 | | eqid 2622 |
. . 3
⊢ (Hom
‘(oppCat‘𝐶)) =
(Hom ‘(oppCat‘𝐶)) |
| 33 | | eqid 2622 |
. . 3
⊢
(comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) |
| 34 | 22, 3 | oppchom 16375 |
. . . 4
⊢ (𝑍(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑍) |
| 35 | 26, 34 | syl6eleqr 2712 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑋)) |
| 36 | 21, 32, 23, 13, 28 | catidcl 16343 |
. . 3
⊢ (𝜑 →
((Id‘(oppCat‘𝐶))‘𝑊) ∈ (𝑊(Hom ‘(oppCat‘𝐶))𝑊)) |
| 37 | | yon2.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (𝑊𝐻𝑋)) |
| 38 | 22, 3 | oppchom 16375 |
. . . 4
⊢ (𝑋(Hom ‘(oppCat‘𝐶))𝑊) = (𝑊𝐻𝑋) |
| 39 | 37, 38 | syl6eleqr 2712 |
. . 3
⊢ (𝜑 → 𝐺 ∈ (𝑋(Hom ‘(oppCat‘𝐶))𝑊)) |
| 40 | 4, 13, 21, 32, 24, 28, 25, 28, 33, 35, 36, 39 | hof2 16897 |
. 2
⊢ (𝜑 → ((𝐹(〈𝑋, 𝑊〉(2nd
‘(HomF‘(oppCat‘𝐶)))〈𝑍, 𝑊〉)((Id‘(oppCat‘𝐶))‘𝑊))‘𝐺) = ((((Id‘(oppCat‘𝐶))‘𝑊)(〈𝑋, 𝑊〉(comp‘(oppCat‘𝐶))𝑊)𝐺)(〈𝑍, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)𝐹)) |
| 41 | 21, 32, 23, 13, 24, 33, 28, 39 | catlid 16344 |
. . . 4
⊢ (𝜑 →
(((Id‘(oppCat‘𝐶))‘𝑊)(〈𝑋, 𝑊〉(comp‘(oppCat‘𝐶))𝑊)𝐺) = 𝐺) |
| 42 | 41 | oveq1d 6665 |
. . 3
⊢ (𝜑 →
((((Id‘(oppCat‘𝐶))‘𝑊)(〈𝑋, 𝑊〉(comp‘(oppCat‘𝐶))𝑊)𝐺)(〈𝑍, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)𝐹) = (𝐺(〈𝑍, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)𝐹)) |
| 43 | | yon12.x |
. . . 4
⊢ · =
(comp‘𝐶) |
| 44 | 11, 43, 3, 25, 24, 28 | oppcco 16377 |
. . 3
⊢ (𝜑 → (𝐺(〈𝑍, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)𝐹) = (𝐹(〈𝑊, 𝑋〉 · 𝑍)𝐺)) |
| 45 | 42, 44 | eqtrd 2656 |
. 2
⊢ (𝜑 →
((((Id‘(oppCat‘𝐶))‘𝑊)(〈𝑋, 𝑊〉(comp‘(oppCat‘𝐶))𝑊)𝐺)(〈𝑍, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)𝐹) = (𝐹(〈𝑊, 𝑋〉 · 𝑍)𝐺)) |
| 46 | 31, 40, 45 | 3eqtrd 2660 |
1
⊢ (𝜑 → ((((𝑋(2nd ‘𝑌)𝑍)‘𝐹)‘𝑊)‘𝐺) = (𝐹(〈𝑊, 𝑋〉 · 𝑍)𝐺)) |