MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem2 Structured version   Visualization version   GIF version

Theorem opphllem2 25640
Description: Lemma for opphl 25646. Lemma 9.3 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 21-Dec-2019.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphllem1.s 𝑆 = ((pInvG‘𝐺)‘𝑀)
opphllem1.a (𝜑𝐴𝑃)
opphllem1.b (𝜑𝐵𝑃)
opphllem1.c (𝜑𝐶𝑃)
opphllem1.r (𝜑𝑅𝐷)
opphllem1.o (𝜑𝐴𝑂𝐶)
opphllem1.m (𝜑𝑀𝐷)
opphllem1.n (𝜑𝐴 = (𝑆𝐶))
opphllem1.x (𝜑𝐴𝑅)
opphllem1.y (𝜑𝐵𝑅)
opphllem2.z (𝜑 → (𝐴 ∈ (𝑅𝐼𝐵) ∨ 𝐵 ∈ (𝑅𝐼𝐴)))
Assertion
Ref Expression
opphllem2 (𝜑𝐵𝑂𝐶)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑀   𝑡,𝑂   𝑡,𝑃   𝑡,𝑆   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opphllem2
StepHypRef Expression
1 hpg.p . . 3 𝑃 = (Base‘𝐺)
2 hpg.d . . 3 = (dist‘𝐺)
3 hpg.i . . 3 𝐼 = (Itv‘𝐺)
4 hpg.o . . 3 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 opphl.l . . 3 𝐿 = (LineG‘𝐺)
6 opphl.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
76adantr 481 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐷 ∈ ran 𝐿)
8 opphl.g . . . 4 (𝜑𝐺 ∈ TarskiG)
98adantr 481 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐺 ∈ TarskiG)
10 opphllem1.c . . . 4 (𝜑𝐶𝑃)
1110adantr 481 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶𝑃)
12 opphllem1.b . . . 4 (𝜑𝐵𝑃)
1312adantr 481 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐵𝑃)
14 opphllem1.s . . . 4 𝑆 = ((pInvG‘𝐺)‘𝑀)
15 eqid 2622 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
16 opphllem1.m . . . . . . 7 (𝜑𝑀𝐷)
171, 5, 3, 8, 6, 16tglnpt 25444 . . . . . 6 (𝜑𝑀𝑃)
1817adantr 481 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀𝑃)
191, 2, 3, 5, 15, 9, 18, 14, 13mircl 25556 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) ∈ 𝑃)
2016adantr 481 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀𝐷)
21 opphllem1.r . . . . . 6 (𝜑𝑅𝐷)
2221adantr 481 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑅𝐷)
231, 2, 3, 5, 15, 9, 14, 7, 20, 22mirln 25571 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ∈ 𝐷)
24 simpr 477 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
25 simplr 792 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐵𝐷)
2624, 25eqeltrd 2701 . . . . . . . 8 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴𝐷)
278ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐺 ∈ TarskiG)
2812ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑃)
291, 5, 3, 8, 6, 21tglnpt 25444 . . . . . . . . . . 11 (𝜑𝑅𝑃)
3029ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝑃)
31 opphllem1.a . . . . . . . . . . 11 (𝜑𝐴𝑃)
3231ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝑃)
33 opphllem1.y . . . . . . . . . . 11 (𝜑𝐵𝑅)
3433ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑅)
3534necomd 2849 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐵)
36 simpllr 799 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅𝐼𝐵))
371, 3, 5, 27, 30, 28, 32, 35, 36btwnlng1 25514 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅𝐿𝐵))
381, 3, 5, 27, 28, 30, 32, 34, 37lncom 25517 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝐵𝐿𝑅))
396ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 ∈ ran 𝐿)
40 simplr 792 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝐷)
4121ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐷)
421, 3, 5, 27, 28, 30, 34, 34, 39, 40, 41tglinethru 25531 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 = (𝐵𝐿𝑅))
4338, 42eleqtrrd 2704 . . . . . . . 8 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝐷)
4426, 43pm2.61dane 2881 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) → 𝐴𝐷)
45 opphllem1.o . . . . . . . . 9 (𝜑𝐴𝑂𝐶)
461, 2, 3, 4, 5, 6, 8, 31, 10, 45oppne1 25633 . . . . . . . 8 (𝜑 → ¬ 𝐴𝐷)
4746ad2antrr 762 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) → ¬ 𝐴𝐷)
4844, 47pm2.65da 600 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ 𝐵𝐷)
499adantr 481 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐺 ∈ TarskiG)
5018adantr 481 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝑀𝑃)
5113adantr 481 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐵𝑃)
521, 2, 3, 5, 15, 49, 50, 14, 51mirmir 25557 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆‘(𝑆𝐵)) = 𝐵)
537adantr 481 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐷 ∈ ran 𝐿)
5420adantr 481 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝑀𝐷)
55 simpr 477 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆𝐵) ∈ 𝐷)
561, 2, 3, 5, 15, 49, 14, 53, 54, 55mirln 25571 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆‘(𝑆𝐵)) ∈ 𝐷)
5752, 56eqeltrrd 2702 . . . . . 6 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐵𝐷)
5848, 57mtand 691 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ (𝑆𝐵) ∈ 𝐷)
591, 2, 3, 5, 15, 9, 18, 14, 13mirbtwn 25553 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀 ∈ ((𝑆𝐵)𝐼𝐵))
601, 2, 3, 4, 19, 13, 20, 58, 48, 59islnoppd 25632 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵)𝑂𝐵)
61 eqidd 2623 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) = (𝑆𝐵))
62 nelne2 2891 . . . . . 6 (((𝑆𝑅) ∈ 𝐷 ∧ ¬ (𝑆𝐵) ∈ 𝐷) → (𝑆𝑅) ≠ (𝑆𝐵))
6323, 58, 62syl2anc 693 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ≠ (𝑆𝐵))
6463necomd 2849 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) ≠ (𝑆𝑅))
651, 2, 3, 4, 5, 6, 8, 31, 10, 45oppne2 25634 . . . . . . 7 (𝜑 → ¬ 𝐶𝐷)
6665adantr 481 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ 𝐶𝐷)
67 nelne2 2891 . . . . . 6 (((𝑆𝑅) ∈ 𝐷 ∧ ¬ 𝐶𝐷) → (𝑆𝑅) ≠ 𝐶)
6823, 66, 67syl2anc 693 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ≠ 𝐶)
6968necomd 2849 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶 ≠ (𝑆𝑅))
70 opphllem1.n . . . . . . . 8 (𝜑𝐴 = (𝑆𝐶))
7170eqcomd 2628 . . . . . . 7 (𝜑 → (𝑆𝐶) = 𝐴)
721, 2, 3, 5, 15, 8, 17, 14, 10, 71mircom 25558 . . . . . 6 (𝜑 → (𝑆𝐴) = 𝐶)
7372adantr 481 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐴) = 𝐶)
7429adantr 481 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑅𝑃)
7531adantr 481 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐴𝑃)
76 simpr 477 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐴 ∈ (𝑅𝐼𝐵))
771, 2, 3, 5, 15, 9, 18, 14, 74, 75, 13, 76mirbtwni 25566 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐴) ∈ ((𝑆𝑅)𝐼(𝑆𝐵)))
7873, 77eqeltrrd 2702 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶 ∈ ((𝑆𝑅)𝐼(𝑆𝐵)))
791, 2, 3, 4, 5, 7, 9, 14, 19, 11, 13, 23, 60, 20, 61, 64, 69, 78opphllem1 25639 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶𝑂𝐵)
801, 2, 3, 4, 5, 7, 9, 11, 13, 79oppcom 25636 . 2 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐵𝑂𝐶)
816adantr 481 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐷 ∈ ran 𝐿)
828adantr 481 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐺 ∈ TarskiG)
8331adantr 481 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑃)
8412adantr 481 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑃)
8510adantr 481 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐶𝑃)
8621adantr 481 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝑅𝐷)
8745adantr 481 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑂𝐶)
8816adantr 481 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝑀𝐷)
8970adantr 481 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴 = (𝑆𝐶))
90 opphllem1.x . . . 4 (𝜑𝐴𝑅)
9190adantr 481 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑅)
9233adantr 481 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑅)
93 simpr 477 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵 ∈ (𝑅𝐼𝐴))
941, 2, 3, 4, 5, 81, 82, 14, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93opphllem1 25639 . 2 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑂𝐶)
95 opphllem2.z . 2 (𝜑 → (𝐴 ∈ (𝑅𝐼𝐵) ∨ 𝐵 ∈ (𝑅𝐼𝐴)))
9680, 94, 95mpjaodan 827 1 (𝜑𝐵𝑂𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  cdif 3571   class class class wbr 4653  {copab 4712  ran crn 5115  cfv 5888  (class class class)co 6650  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-mir 25548
This theorem is referenced by:  opphllem4  25642  opphl  25646
  Copyright terms: Public domain W3C validator