MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliun2 Structured version   Visualization version   GIF version

Theorem ovoliun2 23274
Description: The Lebesgue outer measure function is countably sub-additive. (This version is a little easier to read, but does not allow infinite values like ovoliun 23273.) (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
ovoliun2.t (𝜑𝑇 ∈ dom ⇝ )
Assertion
Ref Expression
ovoliun2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ Σ𝑛 ∈ ℕ (vol*‘𝐴))
Distinct variable group:   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovoliun2
Dummy variables 𝑘 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovoliun.t . . 3 𝑇 = seq1( + , 𝐺)
2 ovoliun.g . . 3 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
3 ovoliun.a . . 3 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
4 ovoliun.v . . 3 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
51, 2, 3, 4ovoliun 23273 . 2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
6 nnuz 11723 . . . . . . . 8 ℕ = (ℤ‘1)
7 1zzd 11408 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
8 fvex 6201 . . . . . . . . . . 11 (vol*‘𝑚 / 𝑛𝐴) ∈ V
9 nfcv 2764 . . . . . . . . . . . . . 14 𝑚(vol*‘𝐴)
10 nfcv 2764 . . . . . . . . . . . . . . 15 𝑛vol*
11 nfcsb1v 3549 . . . . . . . . . . . . . . 15 𝑛𝑚 / 𝑛𝐴
1210, 11nffv 6198 . . . . . . . . . . . . . 14 𝑛(vol*‘𝑚 / 𝑛𝐴)
13 csbeq1a 3542 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
1413fveq2d 6195 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (vol*‘𝐴) = (vol*‘𝑚 / 𝑛𝐴))
159, 12, 14cbvmpt 4749 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
162, 15eqtri 2644 . . . . . . . . . . . 12 𝐺 = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
1716fvmpt2 6291 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (vol*‘𝑚 / 𝑛𝐴) ∈ V) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
188, 17mpan2 707 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
1918adantl 482 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
204ralrimiva 2966 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ)
219nfel1 2779 . . . . . . . . . . . 12 𝑚(vol*‘𝐴) ∈ ℝ
2212nfel1 2779 . . . . . . . . . . . 12 𝑛(vol*‘𝑚 / 𝑛𝐴) ∈ ℝ
2314eleq1d 2686 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ))
2421, 22, 23cbvral 3167 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ ↔ ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2520, 24sylib 208 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2625r19.21bi 2932 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
2719, 26eqeltrd 2701 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ ℝ)
286, 7, 27serfre 12830 . . . . . . 7 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
291feq1i 6036 . . . . . . 7 (𝑇:ℕ⟶ℝ ↔ seq1( + , 𝐺):ℕ⟶ℝ)
3028, 29sylibr 224 . . . . . 6 (𝜑𝑇:ℕ⟶ℝ)
31 frn 6053 . . . . . 6 (𝑇:ℕ⟶ℝ → ran 𝑇 ⊆ ℝ)
3230, 31syl 17 . . . . 5 (𝜑 → ran 𝑇 ⊆ ℝ)
33 1nn 11031 . . . . . . . 8 1 ∈ ℕ
34 fdm 6051 . . . . . . . . 9 (𝑇:ℕ⟶ℝ → dom 𝑇 = ℕ)
3530, 34syl 17 . . . . . . . 8 (𝜑 → dom 𝑇 = ℕ)
3633, 35syl5eleqr 2708 . . . . . . 7 (𝜑 → 1 ∈ dom 𝑇)
37 ne0i 3921 . . . . . . 7 (1 ∈ dom 𝑇 → dom 𝑇 ≠ ∅)
3836, 37syl 17 . . . . . 6 (𝜑 → dom 𝑇 ≠ ∅)
39 dm0rn0 5342 . . . . . . 7 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
4039necon3bii 2846 . . . . . 6 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
4138, 40sylib 208 . . . . 5 (𝜑 → ran 𝑇 ≠ ∅)
42 ovoliun2.t . . . . . . . . 9 (𝜑𝑇 ∈ dom ⇝ )
431, 42syl5eqelr 2706 . . . . . . . 8 (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ )
446, 7, 19, 26, 43isumrecl 14496 . . . . . . 7 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
45 elfznn 12370 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
4645adantl 482 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → 𝑚 ∈ ℕ)
4746, 18syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (𝐺𝑚) = (vol*‘𝑚 / 𝑛𝐴))
48 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
4948, 6syl6eleq 2711 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
50 simpl 473 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝜑)
5150, 45, 26syl2an 494 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
5251recnd 10068 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℂ)
5347, 49, 52fsumser 14461 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) = (seq1( + , 𝐺)‘𝑘))
541fveq1i 6192 . . . . . . . . . 10 (𝑇𝑘) = (seq1( + , 𝐺)‘𝑘)
5553, 54syl6eqr 2674 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) = (𝑇𝑘))
56 fzfid 12772 . . . . . . . . . . 11 (𝜑 → (1...𝑘) ∈ Fin)
57 elfznn 12370 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
5857ssriv 3607 . . . . . . . . . . . 12 (1...𝑘) ⊆ ℕ
5958a1i 11 . . . . . . . . . . 11 (𝜑 → (1...𝑘) ⊆ ℕ)
603ralrimiva 2966 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
61 nfv 1843 . . . . . . . . . . . . . . 15 𝑚 𝐴 ⊆ ℝ
62 nfcv 2764 . . . . . . . . . . . . . . . 16 𝑛
6311, 62nfss 3596 . . . . . . . . . . . . . . 15 𝑛𝑚 / 𝑛𝐴 ⊆ ℝ
6413sseq1d 3632 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐴 ⊆ ℝ ↔ 𝑚 / 𝑛𝐴 ⊆ ℝ))
6561, 63, 64cbvral 3167 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
6660, 65sylib 208 . . . . . . . . . . . . 13 (𝜑 → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
6766r19.21bi 2932 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
68 ovolge0 23249 . . . . . . . . . . . 12 (𝑚 / 𝑛𝐴 ⊆ ℝ → 0 ≤ (vol*‘𝑚 / 𝑛𝐴))
6967, 68syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 0 ≤ (vol*‘𝑚 / 𝑛𝐴))
706, 7, 56, 59, 19, 26, 69, 43isumless 14577 . . . . . . . . . 10 (𝜑 → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
7170adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(vol*‘𝑚 / 𝑛𝐴) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
7255, 71eqbrtrrd 4677 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
7372ralrimiva 2966 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
74 breq2 4657 . . . . . . . . 9 (𝑥 = Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) → ((𝑇𝑘) ≤ 𝑥 ↔ (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴)))
7574ralbidv 2986 . . . . . . . 8 (𝑥 = Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) → (∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴)))
7675rspcev 3309 . . . . . . 7 ((Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥)
7744, 73, 76syl2anc 693 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥)
78 ffn 6045 . . . . . . . . 9 (𝑇:ℕ⟶ℝ → 𝑇 Fn ℕ)
7930, 78syl 17 . . . . . . . 8 (𝜑𝑇 Fn ℕ)
80 breq1 4656 . . . . . . . . 9 (𝑧 = (𝑇𝑘) → (𝑧𝑥 ↔ (𝑇𝑘) ≤ 𝑥))
8180ralrn 6362 . . . . . . . 8 (𝑇 Fn ℕ → (∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
8279, 81syl 17 . . . . . . 7 (𝜑 → (∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
8382rexbidv 3052 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ 𝑥))
8477, 83mpbird 247 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥)
85 supxrre 12157 . . . . 5 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥) → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
8632, 41, 84, 85syl3anc 1326 . . . 4 (𝜑 → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
876, 1, 7, 19, 26, 69, 77isumsup 14579 . . . 4 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) = sup(ran 𝑇, ℝ, < ))
8886, 87eqtr4d 2659 . . 3 (𝜑 → sup(ran 𝑇, ℝ*, < ) = Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴))
899, 12, 14cbvsumi 14427 . . 3 Σ𝑛 ∈ ℕ (vol*‘𝐴) = Σ𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴)
9088, 89syl6eqr 2674 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) = Σ𝑛 ∈ ℕ (vol*‘𝐴))
915, 90breqtrd 4679 1 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ Σ𝑛 ∈ ℕ (vol*‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  csb 3533  wss 3574  c0 3915   ciun 4520   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  supcsup 8346  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cn 11020  cuz 11687  ...cfz 12326  seqcseq 12801  cli 14215  Σcsu 14416  vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-ovol 23233
This theorem is referenced by:  ovoliunnul  23275  vitalilem5  23381
  Copyright terms: Public domain W3C validator