MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliun2 Structured version   Visualization version   Unicode version

Theorem ovoliun2 23274
Description: The Lebesgue outer measure function is countably sub-additive. (This version is a little easier to read, but does not allow infinite values like ovoliun 23273.) (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t  |-  T  =  seq 1 (  +  ,  G )
ovoliun.g  |-  G  =  ( n  e.  NN  |->  ( vol* `  A
) )
ovoliun.a  |-  ( (
ph  /\  n  e.  NN )  ->  A  C_  RR )
ovoliun.v  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol* `  A )  e.  RR )
ovoliun2.t  |-  ( ph  ->  T  e.  dom  ~~>  )
Assertion
Ref Expression
ovoliun2  |-  ( ph  ->  ( vol* `  U_ n  e.  NN  A
)  <_  sum_ n  e.  NN  ( vol* `  A ) )
Distinct variable group:    ph, n
Allowed substitution hints:    A( n)    T( n)    G( n)

Proof of Theorem ovoliun2
Dummy variables  k  m  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovoliun.t . . 3  |-  T  =  seq 1 (  +  ,  G )
2 ovoliun.g . . 3  |-  G  =  ( n  e.  NN  |->  ( vol* `  A
) )
3 ovoliun.a . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  A  C_  RR )
4 ovoliun.v . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol* `  A )  e.  RR )
51, 2, 3, 4ovoliun 23273 . 2  |-  ( ph  ->  ( vol* `  U_ n  e.  NN  A
)  <_  sup ( ran  T ,  RR* ,  <  ) )
6 nnuz 11723 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
7 1zzd 11408 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
8 fvex 6201 . . . . . . . . . . 11  |-  ( vol* `  [_ m  /  n ]_ A )  e. 
_V
9 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ m
( vol* `  A )
10 nfcv 2764 . . . . . . . . . . . . . . 15  |-  F/_ n vol*
11 nfcsb1v 3549 . . . . . . . . . . . . . . 15  |-  F/_ n [_ m  /  n ]_ A
1210, 11nffv 6198 . . . . . . . . . . . . . 14  |-  F/_ n
( vol* `  [_ m  /  n ]_ A )
13 csbeq1a 3542 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
1413fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  ( vol* `  A )  =  ( vol* `  [_ m  /  n ]_ A ) )
159, 12, 14cbvmpt 4749 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  ( vol* `  A )
)  =  ( m  e.  NN  |->  ( vol* `  [_ m  /  n ]_ A ) )
162, 15eqtri 2644 . . . . . . . . . . . 12  |-  G  =  ( m  e.  NN  |->  ( vol* `  [_ m  /  n ]_ A ) )
1716fvmpt2 6291 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( vol* `  [_ m  /  n ]_ A )  e.  _V )  -> 
( G `  m
)  =  ( vol* `  [_ m  /  n ]_ A ) )
188, 17mpan2 707 . . . . . . . . . 10  |-  ( m  e.  NN  ->  ( G `  m )  =  ( vol* `  [_ m  /  n ]_ A ) )
1918adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( G `
 m )  =  ( vol* `  [_ m  /  n ]_ A ) )
204ralrimiva 2966 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( vol* `  A
)  e.  RR )
219nfel1 2779 . . . . . . . . . . . 12  |-  F/ m
( vol* `  A )  e.  RR
2212nfel1 2779 . . . . . . . . . . . 12  |-  F/ n
( vol* `  [_ m  /  n ]_ A )  e.  RR
2314eleq1d 2686 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( vol* `  A )  e.  RR  <->  ( vol* `  [_ m  /  n ]_ A )  e.  RR ) )
2421, 22, 23cbvral 3167 . . . . . . . . . . 11  |-  ( A. n  e.  NN  ( vol* `  A )  e.  RR  <->  A. m  e.  NN  ( vol* `  [_ m  /  n ]_ A )  e.  RR )
2520, 24sylib 208 . . . . . . . . . 10  |-  ( ph  ->  A. m  e.  NN  ( vol* `  [_ m  /  n ]_ A )  e.  RR )
2625r19.21bi 2932 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( vol* `  [_ m  /  n ]_ A )  e.  RR )
2719, 26eqeltrd 2701 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( G `
 m )  e.  RR )
286, 7, 27serfre 12830 . . . . . . 7  |-  ( ph  ->  seq 1 (  +  ,  G ) : NN --> RR )
291feq1i 6036 . . . . . . 7  |-  ( T : NN --> RR  <->  seq 1
(  +  ,  G
) : NN --> RR )
3028, 29sylibr 224 . . . . . 6  |-  ( ph  ->  T : NN --> RR )
31 frn 6053 . . . . . 6  |-  ( T : NN --> RR  ->  ran 
T  C_  RR )
3230, 31syl 17 . . . . 5  |-  ( ph  ->  ran  T  C_  RR )
33 1nn 11031 . . . . . . . 8  |-  1  e.  NN
34 fdm 6051 . . . . . . . . 9  |-  ( T : NN --> RR  ->  dom 
T  =  NN )
3530, 34syl 17 . . . . . . . 8  |-  ( ph  ->  dom  T  =  NN )
3633, 35syl5eleqr 2708 . . . . . . 7  |-  ( ph  ->  1  e.  dom  T
)
37 ne0i 3921 . . . . . . 7  |-  ( 1  e.  dom  T  ->  dom  T  =/=  (/) )
3836, 37syl 17 . . . . . 6  |-  ( ph  ->  dom  T  =/=  (/) )
39 dm0rn0 5342 . . . . . . 7  |-  ( dom 
T  =  (/)  <->  ran  T  =  (/) )
4039necon3bii 2846 . . . . . 6  |-  ( dom 
T  =/=  (/)  <->  ran  T  =/=  (/) )
4138, 40sylib 208 . . . . 5  |-  ( ph  ->  ran  T  =/=  (/) )
42 ovoliun2.t . . . . . . . . 9  |-  ( ph  ->  T  e.  dom  ~~>  )
431, 42syl5eqelr 2706 . . . . . . . 8  |-  ( ph  ->  seq 1 (  +  ,  G )  e. 
dom 
~~>  )
446, 7, 19, 26, 43isumrecl 14496 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  NN  ( vol* `  [_ m  /  n ]_ A )  e.  RR )
45 elfznn 12370 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 ... k )  ->  m  e.  NN )
4645adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  m  e.  NN )
4746, 18syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  ( G `  m )  =  ( vol* `  [_ m  /  n ]_ A ) )
48 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
4948, 6syl6eleq 2711 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
50 simpl 473 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ph )
5150, 45, 26syl2an 494 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  ( vol* `  [_ m  /  n ]_ A )  e.  RR )
5251recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  ( vol* `  [_ m  /  n ]_ A )  e.  CC )
5347, 49, 52fsumser 14461 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ m  e.  ( 1 ... k
) ( vol* `  [_ m  /  n ]_ A )  =  (  seq 1 (  +  ,  G ) `  k ) )
541fveq1i 6192 . . . . . . . . . 10  |-  ( T `
 k )  =  (  seq 1 (  +  ,  G ) `
 k )
5553, 54syl6eqr 2674 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ m  e.  ( 1 ... k
) ( vol* `  [_ m  /  n ]_ A )  =  ( T `  k ) )
56 fzfid 12772 . . . . . . . . . . 11  |-  ( ph  ->  ( 1 ... k
)  e.  Fin )
57 elfznn 12370 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... k )  ->  n  e.  NN )
5857ssriv 3607 . . . . . . . . . . . 12  |-  ( 1 ... k )  C_  NN
5958a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( 1 ... k
)  C_  NN )
603ralrimiva 2966 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. n  e.  NN  A  C_  RR )
61 nfv 1843 . . . . . . . . . . . . . . 15  |-  F/ m  A  C_  RR
62 nfcv 2764 . . . . . . . . . . . . . . . 16  |-  F/_ n RR
6311, 62nfss 3596 . . . . . . . . . . . . . . 15  |-  F/ n [_ m  /  n ]_ A  C_  RR
6413sseq1d 3632 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  ( A  C_  RR  <->  [_ m  /  n ]_ A  C_  RR ) )
6561, 63, 64cbvral 3167 . . . . . . . . . . . . . 14  |-  ( A. n  e.  NN  A  C_  RR  <->  A. m  e.  NN  [_ m  /  n ]_ A  C_  RR )
6660, 65sylib 208 . . . . . . . . . . . . 13  |-  ( ph  ->  A. m  e.  NN  [_ m  /  n ]_ A  C_  RR )
6766r19.21bi 2932 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  [_ m  /  n ]_ A  C_  RR )
68 ovolge0 23249 . . . . . . . . . . . 12  |-  ( [_ m  /  n ]_ A  C_  RR  ->  0  <_  ( vol* `  [_ m  /  n ]_ A ) )
6967, 68syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  0  <_ 
( vol* `  [_ m  /  n ]_ A ) )
706, 7, 56, 59, 19, 26, 69, 43isumless 14577 . . . . . . . . . 10  |-  ( ph  -> 
sum_ m  e.  (
1 ... k ) ( vol* `  [_ m  /  n ]_ A )  <_  sum_ m  e.  NN  ( vol* `  [_ m  /  n ]_ A ) )
7170adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ m  e.  ( 1 ... k
) ( vol* `  [_ m  /  n ]_ A )  <_  sum_ m  e.  NN  ( vol* `  [_ m  /  n ]_ A ) )
7255, 71eqbrtrrd 4677 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( T `
 k )  <_  sum_ m  e.  NN  ( vol* `  [_ m  /  n ]_ A ) )
7372ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. k  e.  NN  ( T `  k )  <_  sum_ m  e.  NN  ( vol* `  [_ m  /  n ]_ A ) )
74 breq2 4657 . . . . . . . . 9  |-  ( x  =  sum_ m  e.  NN  ( vol* `  [_ m  /  n ]_ A )  ->  ( ( T `
 k )  <_  x 
<->  ( T `  k
)  <_  sum_ m  e.  NN  ( vol* `  [_ m  /  n ]_ A ) ) )
7574ralbidv 2986 . . . . . . . 8  |-  ( x  =  sum_ m  e.  NN  ( vol* `  [_ m  /  n ]_ A )  ->  ( A. k  e.  NN  ( T `  k )  <_  x  <->  A. k  e.  NN  ( T `  k )  <_ 
sum_ m  e.  NN  ( vol* `  [_ m  /  n ]_ A ) ) )
7675rspcev 3309 . . . . . . 7  |-  ( (
sum_ m  e.  NN  ( vol* `  [_ m  /  n ]_ A )  e.  RR  /\  A. k  e.  NN  ( T `  k )  <_ 
sum_ m  e.  NN  ( vol* `  [_ m  /  n ]_ A ) )  ->  E. x  e.  RR  A. k  e.  NN  ( T `  k )  <_  x
)
7744, 73, 76syl2anc 693 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  A. k  e.  NN  ( T `  k )  <_  x )
78 ffn 6045 . . . . . . . . 9  |-  ( T : NN --> RR  ->  T  Fn  NN )
7930, 78syl 17 . . . . . . . 8  |-  ( ph  ->  T  Fn  NN )
80 breq1 4656 . . . . . . . . 9  |-  ( z  =  ( T `  k )  ->  (
z  <_  x  <->  ( T `  k )  <_  x
) )
8180ralrn 6362 . . . . . . . 8  |-  ( T  Fn  NN  ->  ( A. z  e.  ran  T  z  <_  x  <->  A. k  e.  NN  ( T `  k )  <_  x
) )
8279, 81syl 17 . . . . . . 7  |-  ( ph  ->  ( A. z  e. 
ran  T  z  <_  x  <->  A. k  e.  NN  ( T `  k )  <_  x ) )
8382rexbidv 3052 . . . . . 6  |-  ( ph  ->  ( E. x  e.  RR  A. z  e. 
ran  T  z  <_  x  <->  E. x  e.  RR  A. k  e.  NN  ( T `  k )  <_  x ) )
8477, 83mpbird 247 . . . . 5  |-  ( ph  ->  E. x  e.  RR  A. z  e.  ran  T  z  <_  x )
85 supxrre 12157 . . . . 5  |-  ( ( ran  T  C_  RR  /\ 
ran  T  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  T  z  <_  x )  ->  sup ( ran  T ,  RR* ,  <  )  =  sup ( ran  T ,  RR ,  <  ) )
8632, 41, 84, 85syl3anc 1326 . . . 4  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  =  sup ( ran  T ,  RR ,  <  )
)
876, 1, 7, 19, 26, 69, 77isumsup 14579 . . . 4  |-  ( ph  -> 
sum_ m  e.  NN  ( vol* `  [_ m  /  n ]_ A )  =  sup ( ran 
T ,  RR ,  <  ) )
8886, 87eqtr4d 2659 . . 3  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  =  sum_ m  e.  NN  ( vol* `  [_ m  /  n ]_ A ) )
899, 12, 14cbvsumi 14427 . . 3  |-  sum_ n  e.  NN  ( vol* `  A )  =  sum_ m  e.  NN  ( vol* `  [_ m  /  n ]_ A )
9088, 89syl6eqr 2674 . 2  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  =  sum_ n  e.  NN  ( vol* `  A
) )
915, 90breqtrd 4679 1  |-  ( ph  ->  ( vol* `  U_ n  e.  NN  A
)  <_  sum_ n  e.  NN  ( vol* `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200   [_csb 3533    C_ wss 3574   (/)c0 3915   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075   NNcn 11020   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801    ~~> cli 14215   sum_csu 14416   vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-ovol 23233
This theorem is referenced by:  ovoliunnul  23275  vitalilem5  23381
  Copyright terms: Public domain W3C validator