![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1plusgfvi | Structured version Visualization version GIF version |
Description: Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
ply1plusgfvi | ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvi 6255 | . . . . 5 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
2 | 1 | fveq2d 6195 | . . . 4 ⊢ (𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘𝑅)) |
3 | 2 | fveq2d 6195 | . . 3 ⊢ (𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
4 | eqid 2622 | . . . . . 6 ⊢ (Poly1‘∅) = (Poly1‘∅) | |
5 | eqid 2622 | . . . . . 6 ⊢ (1𝑜 mPoly ∅) = (1𝑜 mPoly ∅) | |
6 | eqid 2622 | . . . . . 6 ⊢ (+g‘(Poly1‘∅)) = (+g‘(Poly1‘∅)) | |
7 | 4, 5, 6 | ply1plusg 19595 | . . . . 5 ⊢ (+g‘(Poly1‘∅)) = (+g‘(1𝑜 mPoly ∅)) |
8 | eqid 2622 | . . . . . . 7 ⊢ (1𝑜 mPwSer ∅) = (1𝑜 mPwSer ∅) | |
9 | eqid 2622 | . . . . . . 7 ⊢ (+g‘(1𝑜 mPoly ∅)) = (+g‘(1𝑜 mPoly ∅)) | |
10 | 5, 8, 9 | mplplusg 19590 | . . . . . 6 ⊢ (+g‘(1𝑜 mPoly ∅)) = (+g‘(1𝑜 mPwSer ∅)) |
11 | base0 15912 | . . . . . . . . . 10 ⊢ ∅ = (Base‘∅) | |
12 | psr1baslem 19555 | . . . . . . . . . 10 ⊢ (ℕ0 ↑𝑚 1𝑜) = {𝑎 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
13 | eqid 2622 | . . . . . . . . . 10 ⊢ (Base‘(1𝑜 mPwSer ∅)) = (Base‘(1𝑜 mPwSer ∅)) | |
14 | 1on 7567 | . . . . . . . . . . 11 ⊢ 1𝑜 ∈ On | |
15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 1𝑜 ∈ On) |
16 | 8, 11, 12, 13, 15 | psrbas 19378 | . . . . . . . . 9 ⊢ (⊤ → (Base‘(1𝑜 mPwSer ∅)) = (∅ ↑𝑚 (ℕ0 ↑𝑚 1𝑜))) |
17 | 16 | trud 1493 | . . . . . . . 8 ⊢ (Base‘(1𝑜 mPwSer ∅)) = (∅ ↑𝑚 (ℕ0 ↑𝑚 1𝑜)) |
18 | 0nn0 11307 | . . . . . . . . . . 11 ⊢ 0 ∈ ℕ0 | |
19 | 18 | fconst6 6095 | . . . . . . . . . 10 ⊢ (1𝑜 × {0}):1𝑜⟶ℕ0 |
20 | nn0ex 11298 | . . . . . . . . . . 11 ⊢ ℕ0 ∈ V | |
21 | 14 | elexi 3213 | . . . . . . . . . . 11 ⊢ 1𝑜 ∈ V |
22 | 20, 21 | elmap 7886 | . . . . . . . . . 10 ⊢ ((1𝑜 × {0}) ∈ (ℕ0 ↑𝑚 1𝑜) ↔ (1𝑜 × {0}):1𝑜⟶ℕ0) |
23 | 19, 22 | mpbir 221 | . . . . . . . . 9 ⊢ (1𝑜 × {0}) ∈ (ℕ0 ↑𝑚 1𝑜) |
24 | ne0i 3921 | . . . . . . . . 9 ⊢ ((1𝑜 × {0}) ∈ (ℕ0 ↑𝑚 1𝑜) → (ℕ0 ↑𝑚 1𝑜) ≠ ∅) | |
25 | map0b 7896 | . . . . . . . . 9 ⊢ ((ℕ0 ↑𝑚 1𝑜) ≠ ∅ → (∅ ↑𝑚 (ℕ0 ↑𝑚 1𝑜)) = ∅) | |
26 | 23, 24, 25 | mp2b 10 | . . . . . . . 8 ⊢ (∅ ↑𝑚 (ℕ0 ↑𝑚 1𝑜)) = ∅ |
27 | 17, 26 | eqtr2i 2645 | . . . . . . 7 ⊢ ∅ = (Base‘(1𝑜 mPwSer ∅)) |
28 | eqid 2622 | . . . . . . 7 ⊢ (+g‘∅) = (+g‘∅) | |
29 | eqid 2622 | . . . . . . 7 ⊢ (+g‘(1𝑜 mPwSer ∅)) = (+g‘(1𝑜 mPwSer ∅)) | |
30 | 8, 27, 28, 29 | psrplusg 19381 | . . . . . 6 ⊢ (+g‘(1𝑜 mPwSer ∅)) = ( ∘𝑓 (+g‘∅) ↾ (∅ × ∅)) |
31 | xp0 5552 | . . . . . . 7 ⊢ (∅ × ∅) = ∅ | |
32 | 31 | reseq2i 5393 | . . . . . 6 ⊢ ( ∘𝑓 (+g‘∅) ↾ (∅ × ∅)) = ( ∘𝑓 (+g‘∅) ↾ ∅) |
33 | 10, 30, 32 | 3eqtri 2648 | . . . . 5 ⊢ (+g‘(1𝑜 mPoly ∅)) = ( ∘𝑓 (+g‘∅) ↾ ∅) |
34 | res0 5400 | . . . . . 6 ⊢ ( ∘𝑓 (+g‘∅) ↾ ∅) = ∅ | |
35 | df-plusg 15954 | . . . . . . 7 ⊢ +g = Slot 2 | |
36 | 35 | str0 15911 | . . . . . 6 ⊢ ∅ = (+g‘∅) |
37 | 34, 36 | eqtri 2644 | . . . . 5 ⊢ ( ∘𝑓 (+g‘∅) ↾ ∅) = (+g‘∅) |
38 | 7, 33, 37 | 3eqtri 2648 | . . . 4 ⊢ (+g‘(Poly1‘∅)) = (+g‘∅) |
39 | fvprc 6185 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → ( I ‘𝑅) = ∅) | |
40 | 39 | fveq2d 6195 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘∅)) |
41 | 40 | fveq2d 6195 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘∅))) |
42 | fvprc 6185 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
43 | 42 | fveq2d 6195 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘𝑅)) = (+g‘∅)) |
44 | 38, 41, 43 | 3eqtr4a 2682 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
45 | 3, 44 | pm2.61i 176 | . 2 ⊢ (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅)) |
46 | 45 | eqcomi 2631 | 1 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1483 ⊤wtru 1484 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∅c0 3915 {csn 4177 I cid 5023 × cxp 5112 ↾ cres 5116 Oncon0 5723 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ∘𝑓 cof 6895 1𝑜c1o 7553 ↑𝑚 cmap 7857 0cc0 9936 2c2 11070 ℕ0cn0 11292 Basecbs 15857 +gcplusg 15941 mPwSer cmps 19351 mPoly cmpl 19353 Poly1cpl1 19547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-tset 15960 df-ple 15961 df-psr 19356 df-mpl 19358 df-opsr 19360 df-psr1 19550 df-ply1 19552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |