MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdscrngd Structured version   Visualization version   GIF version

Theorem prdscrngd 18613
Description: A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdscrngd.y 𝑌 = (𝑆Xs𝑅)
prdscrngd.i (𝜑𝐼𝑊)
prdscrngd.s (𝜑𝑆𝑉)
prdscrngd.r (𝜑𝑅:𝐼⟶CRing)
Assertion
Ref Expression
prdscrngd (𝜑𝑌 ∈ CRing)

Proof of Theorem prdscrngd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdscrngd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdscrngd.i . . 3 (𝜑𝐼𝑊)
3 prdscrngd.s . . 3 (𝜑𝑆𝑉)
4 prdscrngd.r . . . 4 (𝜑𝑅:𝐼⟶CRing)
5 crngring 18558 . . . . 5 (𝑥 ∈ CRing → 𝑥 ∈ Ring)
65ssriv 3607 . . . 4 CRing ⊆ Ring
7 fss 6056 . . . 4 ((𝑅:𝐼⟶CRing ∧ CRing ⊆ Ring) → 𝑅:𝐼⟶Ring)
84, 6, 7sylancl 694 . . 3 (𝜑𝑅:𝐼⟶Ring)
91, 2, 3, 8prdsringd 18612 . 2 (𝜑𝑌 ∈ Ring)
10 eqid 2622 . . . 4 (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅))
11 fnmgp 18491 . . . . . . 7 mulGrp Fn V
12 ssv 3625 . . . . . . 7 CRing ⊆ V
13 fnssres 6004 . . . . . . 7 ((mulGrp Fn V ∧ CRing ⊆ V) → (mulGrp ↾ CRing) Fn CRing)
1411, 12, 13mp2an 708 . . . . . 6 (mulGrp ↾ CRing) Fn CRing
15 fvres 6207 . . . . . . . 8 (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) = (mulGrp‘𝑥))
16 eqid 2622 . . . . . . . . 9 (mulGrp‘𝑥) = (mulGrp‘𝑥)
1716crngmgp 18555 . . . . . . . 8 (𝑥 ∈ CRing → (mulGrp‘𝑥) ∈ CMnd)
1815, 17eqeltrd 2701 . . . . . . 7 (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd)
1918rgen 2922 . . . . . 6 𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd
20 ffnfv 6388 . . . . . 6 ((mulGrp ↾ CRing):CRing⟶CMnd ↔ ((mulGrp ↾ CRing) Fn CRing ∧ ∀𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd))
2114, 19, 20mpbir2an 955 . . . . 5 (mulGrp ↾ CRing):CRing⟶CMnd
22 fco2 6059 . . . . 5 (((mulGrp ↾ CRing):CRing⟶CMnd ∧ 𝑅:𝐼⟶CRing) → (mulGrp ∘ 𝑅):𝐼⟶CMnd)
2321, 4, 22sylancr 695 . . . 4 (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶CMnd)
2410, 2, 3, 23prdscmnd 18264 . . 3 (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd)
25 eqidd 2623 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
26 eqid 2622 . . . . . 6 (mulGrp‘𝑌) = (mulGrp‘𝑌)
27 ffn 6045 . . . . . . 7 (𝑅:𝐼⟶CRing → 𝑅 Fn 𝐼)
284, 27syl 17 . . . . . 6 (𝜑𝑅 Fn 𝐼)
291, 26, 10, 2, 3, 28prdsmgp 18610 . . . . 5 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))))
3029simpld 475 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))))
3129simprd 479 . . . . 5 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))
3231oveqdr 6674 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦))
3325, 30, 32cmnpropd 18202 . . 3 (𝜑 → ((mulGrp‘𝑌) ∈ CMnd ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd))
3424, 33mpbird 247 . 2 (𝜑 → (mulGrp‘𝑌) ∈ CMnd)
3526iscrng 18554 . 2 (𝑌 ∈ CRing ↔ (𝑌 ∈ Ring ∧ (mulGrp‘𝑌) ∈ CMnd))
369, 34, 35sylanbrc 698 1 (𝜑𝑌 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574  cres 5116  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Xscprds 16106  CMndccmn 18193  mulGrpcmgp 18489  Ringcrg 18547  CRingccrg 18548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-cmn 18195  df-mgp 18490  df-ring 18549  df-cring 18550
This theorem is referenced by:  pwscrng  18617
  Copyright terms: Public domain W3C validator