MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsval2 Structured version   Visualization version   GIF version

Theorem prdsdsval2 16144
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt2.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbasmpt2.b 𝐵 = (Base‘𝑌)
prdsbasmpt2.s (𝜑𝑆𝑉)
prdsbasmpt2.i (𝜑𝐼𝑊)
prdsbasmpt2.r (𝜑 → ∀𝑥𝐼 𝑅𝑋)
prdsdsval2.f (𝜑𝐹𝐵)
prdsdsval2.g (𝜑𝐺𝐵)
prdsdsval2.e 𝐸 = (dist‘𝑅)
prdsdsval2.d 𝐷 = (dist‘𝑌)
Assertion
Ref Expression
prdsdsval2 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem prdsdsval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt2.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbasmpt2.b . . 3 𝐵 = (Base‘𝑌)
3 prdsbasmpt2.s . . 3 (𝜑𝑆𝑉)
4 prdsbasmpt2.i . . 3 (𝜑𝐼𝑊)
5 prdsbasmpt2.r . . . 4 (𝜑 → ∀𝑥𝐼 𝑅𝑋)
6 eqid 2622 . . . . 5 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
76fnmpt 6020 . . . 4 (∀𝑥𝐼 𝑅𝑋 → (𝑥𝐼𝑅) Fn 𝐼)
85, 7syl 17 . . 3 (𝜑 → (𝑥𝐼𝑅) Fn 𝐼)
9 prdsdsval2.f . . 3 (𝜑𝐹𝐵)
10 prdsdsval2.g . . 3 (𝜑𝐺𝐵)
11 prdsdsval2.d . . 3 𝐷 = (dist‘𝑌)
121, 2, 3, 4, 8, 9, 10, 11prdsdsval 16138 . 2 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}), ℝ*, < ))
13 nfcv 2764 . . . . . . . 8 𝑥(𝐹𝑦)
14 nfcv 2764 . . . . . . . . 9 𝑥dist
15 nffvmpt1 6199 . . . . . . . . 9 𝑥((𝑥𝐼𝑅)‘𝑦)
1614, 15nffv 6198 . . . . . . . 8 𝑥(dist‘((𝑥𝐼𝑅)‘𝑦))
17 nfcv 2764 . . . . . . . 8 𝑥(𝐺𝑦)
1813, 16, 17nfov 6676 . . . . . . 7 𝑥((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))
19 nfcv 2764 . . . . . . 7 𝑦((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))
20 fveq2 6191 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥𝐼𝑅)‘𝑦) = ((𝑥𝐼𝑅)‘𝑥))
2120fveq2d 6195 . . . . . . . 8 (𝑦 = 𝑥 → (dist‘((𝑥𝐼𝑅)‘𝑦)) = (dist‘((𝑥𝐼𝑅)‘𝑥)))
22 fveq2 6191 . . . . . . . 8 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
23 fveq2 6191 . . . . . . . 8 (𝑦 = 𝑥 → (𝐺𝑦) = (𝐺𝑥))
2421, 22, 23oveq123d 6671 . . . . . . 7 (𝑦 = 𝑥 → ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦)) = ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)))
2518, 19, 24cbvmpt 4749 . . . . . 6 (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)))
26 eqidd 2623 . . . . . . 7 (𝜑𝐼 = 𝐼)
276fvmpt2 6291 . . . . . . . . . . . 12 ((𝑥𝐼𝑅𝑋) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
2827fveq2d 6195 . . . . . . . . . . 11 ((𝑥𝐼𝑅𝑋) → (dist‘((𝑥𝐼𝑅)‘𝑥)) = (dist‘𝑅))
29 prdsdsval2.e . . . . . . . . . . 11 𝐸 = (dist‘𝑅)
3028, 29syl6eqr 2674 . . . . . . . . . 10 ((𝑥𝐼𝑅𝑋) → (dist‘((𝑥𝐼𝑅)‘𝑥)) = 𝐸)
3130oveqd 6667 . . . . . . . . 9 ((𝑥𝐼𝑅𝑋) → ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
3231ralimiaa 2951 . . . . . . . 8 (∀𝑥𝐼 𝑅𝑋 → ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
335, 32syl 17 . . . . . . 7 (𝜑 → ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
34 mpteq12 4736 . . . . . . 7 ((𝐼 = 𝐼 ∧ ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥))) → (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3526, 33, 34syl2anc 693 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3625, 35syl5eq 2668 . . . . 5 (𝜑 → (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3736rneqd 5353 . . . 4 (𝜑 → ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3837uneq1d 3766 . . 3 (𝜑 → (ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}))
3938supeq1d 8352 . 2 (𝜑 → sup((ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
4012, 39eqtrd 2656 1 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  cun 3572  {csn 4177  cmpt 4729  ran crn 5115   Fn wfn 5883  cfv 5888  (class class class)co 6650  supcsup 8346  0cc0 9936  *cxr 10073   < clt 10074  Basecbs 15857  distcds 15950  Xscprds 16106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-prds 16108
This theorem is referenced by:  prdsdsval3  16145  ressprdsds  22176
  Copyright terms: Public domain W3C validator