MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressprdsds Structured version   Visualization version   GIF version

Theorem ressprdsds 22176
Description: Restriction of a product metric. (Contributed by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
ressprdsds.y (𝜑𝑌 = (𝑆Xs(𝑥𝐼𝑅)))
ressprdsds.h (𝜑𝐻 = (𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))
ressprdsds.b 𝐵 = (Base‘𝐻)
ressprdsds.d 𝐷 = (dist‘𝑌)
ressprdsds.e 𝐸 = (dist‘𝐻)
ressprdsds.s (𝜑𝑆𝑈)
ressprdsds.t (𝜑𝑇𝑉)
ressprdsds.i (𝜑𝐼𝑊)
ressprdsds.r ((𝜑𝑥𝐼) → 𝑅𝑋)
ressprdsds.a ((𝜑𝑥𝐼) → 𝐴𝑍)
Assertion
Ref Expression
ressprdsds (𝜑𝐸 = (𝐷 ↾ (𝐵 × 𝐵)))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)   𝐸(𝑥)   𝐻(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem ressprdsds
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovres 6800 . . . . 5 ((𝑓𝐵𝑔𝐵) → (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔) = (𝑓𝐷𝑔))
21adantl 482 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔) = (𝑓𝐷𝑔))
3 ressprdsds.a . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 𝐴𝑍)
4 eqid 2622 . . . . . . . . . . . . . 14 (𝑅s 𝐴) = (𝑅s 𝐴)
5 eqid 2622 . . . . . . . . . . . . . 14 (dist‘𝑅) = (dist‘𝑅)
64, 5ressds 16073 . . . . . . . . . . . . 13 (𝐴𝑍 → (dist‘𝑅) = (dist‘(𝑅s 𝐴)))
73, 6syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → (dist‘𝑅) = (dist‘(𝑅s 𝐴)))
87oveqd 6667 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥)) = ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥)))
98mpteq2dva 4744 . . . . . . . . . 10 (𝜑 → (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))))
109adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))))
1110rneqd 5353 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) = ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))))
1211uneq1d 3766 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))) ∪ {0}))
1312supeq1d 8352 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))) ∪ {0}), ℝ*, < ))
14 eqid 2622 . . . . . . 7 (𝑆Xs(𝑥𝐼𝑅)) = (𝑆Xs(𝑥𝐼𝑅))
15 eqid 2622 . . . . . . 7 (Base‘(𝑆Xs(𝑥𝐼𝑅))) = (Base‘(𝑆Xs(𝑥𝐼𝑅)))
16 ressprdsds.s . . . . . . . 8 (𝜑𝑆𝑈)
1716adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑈)
18 ressprdsds.i . . . . . . . 8 (𝜑𝐼𝑊)
1918adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑊)
20 ressprdsds.r . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝑅𝑋)
2120ralrimiva 2966 . . . . . . . 8 (𝜑 → ∀𝑥𝐼 𝑅𝑋)
2221adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝑅𝑋)
23 eqid 2622 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
244, 23ressbasss 15932 . . . . . . . . . . . . . . 15 (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅)
2524a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
2625ralrimiva 2966 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐼 (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
27 ss2ixp 7921 . . . . . . . . . . . . 13 (∀𝑥𝐼 (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅) → X𝑥𝐼 (Base‘(𝑅s 𝐴)) ⊆ X𝑥𝐼 (Base‘𝑅))
2826, 27syl 17 . . . . . . . . . . . 12 (𝜑X𝑥𝐼 (Base‘(𝑅s 𝐴)) ⊆ X𝑥𝐼 (Base‘𝑅))
29 eqid 2622 . . . . . . . . . . . . 13 (𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))) = (𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))
30 eqid 2622 . . . . . . . . . . . . 13 (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) = (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))
31 ressprdsds.t . . . . . . . . . . . . 13 (𝜑𝑇𝑉)
32 ovex 6678 . . . . . . . . . . . . . . 15 (𝑅s 𝐴) ∈ V
3332rgenw 2924 . . . . . . . . . . . . . 14 𝑥𝐼 (𝑅s 𝐴) ∈ V
3433a1i 11 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐼 (𝑅s 𝐴) ∈ V)
35 eqid 2622 . . . . . . . . . . . . 13 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
3629, 30, 31, 18, 34, 35prdsbas3 16141 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) = X𝑥𝐼 (Base‘(𝑅s 𝐴)))
3714, 15, 16, 18, 21, 23prdsbas3 16141 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑆Xs(𝑥𝐼𝑅))) = X𝑥𝐼 (Base‘𝑅))
3828, 36, 373sstr4d 3648 . . . . . . . . . . 11 (𝜑 → (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) ⊆ (Base‘(𝑆Xs(𝑥𝐼𝑅))))
39 ressprdsds.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐻)
40 ressprdsds.h . . . . . . . . . . . . 13 (𝜑𝐻 = (𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))
4140fveq2d 6195 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐻) = (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
4239, 41syl5eq 2668 . . . . . . . . . . 11 (𝜑𝐵 = (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
43 ressprdsds.y . . . . . . . . . . . 12 (𝜑𝑌 = (𝑆Xs(𝑥𝐼𝑅)))
4443fveq2d 6195 . . . . . . . . . . 11 (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥𝐼𝑅))))
4538, 42, 443sstr4d 3648 . . . . . . . . . 10 (𝜑𝐵 ⊆ (Base‘𝑌))
4645adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 ⊆ (Base‘𝑌))
4744adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥𝐼𝑅))))
4846, 47sseqtrd 3641 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 ⊆ (Base‘(𝑆Xs(𝑥𝐼𝑅))))
49 simprl 794 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
5048, 49sseldd 3604 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(𝑆Xs(𝑥𝐼𝑅))))
51 simprr 796 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
5248, 51sseldd 3604 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(𝑆Xs(𝑥𝐼𝑅))))
53 eqid 2622 . . . . . . 7 (dist‘(𝑆Xs(𝑥𝐼𝑅))) = (dist‘(𝑆Xs(𝑥𝐼𝑅)))
5414, 15, 17, 19, 22, 50, 52, 5, 53prdsdsval2 16144 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(dist‘(𝑆Xs(𝑥𝐼𝑅)))𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) ∪ {0}), ℝ*, < ))
5531adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑇𝑉)
5633a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑅s 𝐴) ∈ V)
5742adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 = (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
5849, 57eleqtrd 2703 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
5951, 57eleqtrd 2703 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
60 eqid 2622 . . . . . . 7 (dist‘(𝑅s 𝐴)) = (dist‘(𝑅s 𝐴))
61 eqid 2622 . . . . . . 7 (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) = (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))
6229, 30, 55, 19, 56, 58, 59, 60, 61prdsdsval2 16144 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))) ∪ {0}), ℝ*, < ))
6313, 54, 623eqtr4d 2666 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(dist‘(𝑆Xs(𝑥𝐼𝑅)))𝑔) = (𝑓(dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))𝑔))
64 ressprdsds.d . . . . . . 7 𝐷 = (dist‘𝑌)
6543fveq2d 6195 . . . . . . 7 (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑥𝐼𝑅))))
6664, 65syl5eq 2668 . . . . . 6 (𝜑𝐷 = (dist‘(𝑆Xs(𝑥𝐼𝑅))))
6766oveqdr 6674 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = (𝑓(dist‘(𝑆Xs(𝑥𝐼𝑅)))𝑔))
68 ressprdsds.e . . . . . . 7 𝐸 = (dist‘𝐻)
6940fveq2d 6195 . . . . . . 7 (𝜑 → (dist‘𝐻) = (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
7068, 69syl5eq 2668 . . . . . 6 (𝜑𝐸 = (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
7170oveqdr 6674 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐸𝑔) = (𝑓(dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))𝑔))
7263, 67, 713eqtr4d 2666 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = (𝑓𝐸𝑔))
732, 72eqtr2d 2657 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐸𝑔) = (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔))
7473ralrimivva 2971 . 2 (𝜑 → ∀𝑓𝐵𝑔𝐵 (𝑓𝐸𝑔) = (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔))
75 mptexg 6484 . . . . . 6 (𝐼𝑊 → (𝑥𝐼 ↦ (𝑅s 𝐴)) ∈ V)
7618, 75syl 17 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝑅s 𝐴)) ∈ V)
77 eqid 2622 . . . . . . 7 (𝑥𝐼 ↦ (𝑅s 𝐴)) = (𝑥𝐼 ↦ (𝑅s 𝐴))
7832, 77dmmpti 6023 . . . . . 6 dom (𝑥𝐼 ↦ (𝑅s 𝐴)) = 𝐼
7978a1i 11 . . . . 5 (𝜑 → dom (𝑥𝐼 ↦ (𝑅s 𝐴)) = 𝐼)
8029, 31, 76, 30, 79, 61prdsdsfn 16125 . . . 4 (𝜑 → (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) Fn ((Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) × (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))))
8142sqxpeqd 5141 . . . . 5 (𝜑 → (𝐵 × 𝐵) = ((Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) × (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))))
8270, 81fneq12d 5983 . . . 4 (𝜑 → (𝐸 Fn (𝐵 × 𝐵) ↔ (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) Fn ((Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) × (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))))
8380, 82mpbird 247 . . 3 (𝜑𝐸 Fn (𝐵 × 𝐵))
84 mptexg 6484 . . . . . . 7 (𝐼𝑊 → (𝑥𝐼𝑅) ∈ V)
8518, 84syl 17 . . . . . 6 (𝜑 → (𝑥𝐼𝑅) ∈ V)
86 dmmptg 5632 . . . . . . 7 (∀𝑥𝐼 𝑅𝑋 → dom (𝑥𝐼𝑅) = 𝐼)
8721, 86syl 17 . . . . . 6 (𝜑 → dom (𝑥𝐼𝑅) = 𝐼)
8814, 16, 85, 15, 87, 53prdsdsfn 16125 . . . . 5 (𝜑 → (dist‘(𝑆Xs(𝑥𝐼𝑅))) Fn ((Base‘(𝑆Xs(𝑥𝐼𝑅))) × (Base‘(𝑆Xs(𝑥𝐼𝑅)))))
8944sqxpeqd 5141 . . . . . 6 (𝜑 → ((Base‘𝑌) × (Base‘𝑌)) = ((Base‘(𝑆Xs(𝑥𝐼𝑅))) × (Base‘(𝑆Xs(𝑥𝐼𝑅)))))
9066, 89fneq12d 5983 . . . . 5 (𝜑 → (𝐷 Fn ((Base‘𝑌) × (Base‘𝑌)) ↔ (dist‘(𝑆Xs(𝑥𝐼𝑅))) Fn ((Base‘(𝑆Xs(𝑥𝐼𝑅))) × (Base‘(𝑆Xs(𝑥𝐼𝑅))))))
9188, 90mpbird 247 . . . 4 (𝜑𝐷 Fn ((Base‘𝑌) × (Base‘𝑌)))
92 xpss12 5225 . . . . 5 ((𝐵 ⊆ (Base‘𝑌) ∧ 𝐵 ⊆ (Base‘𝑌)) → (𝐵 × 𝐵) ⊆ ((Base‘𝑌) × (Base‘𝑌)))
9345, 45, 92syl2anc 693 . . . 4 (𝜑 → (𝐵 × 𝐵) ⊆ ((Base‘𝑌) × (Base‘𝑌)))
94 fnssres 6004 . . . 4 ((𝐷 Fn ((Base‘𝑌) × (Base‘𝑌)) ∧ (𝐵 × 𝐵) ⊆ ((Base‘𝑌) × (Base‘𝑌))) → (𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
9591, 93, 94syl2anc 693 . . 3 (𝜑 → (𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
96 eqfnov2 6767 . . 3 ((𝐸 Fn (𝐵 × 𝐵) ∧ (𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) → (𝐸 = (𝐷 ↾ (𝐵 × 𝐵)) ↔ ∀𝑓𝐵𝑔𝐵 (𝑓𝐸𝑔) = (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔)))
9783, 95, 96syl2anc 693 . 2 (𝜑 → (𝐸 = (𝐷 ↾ (𝐵 × 𝐵)) ↔ ∀𝑓𝐵𝑔𝐵 (𝑓𝐸𝑔) = (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔)))
9874, 97mpbird 247 1 (𝜑𝐸 = (𝐷 ↾ (𝐵 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cun 3572  wss 3574  {csn 4177  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  cres 5116   Fn wfn 5883  cfv 5888  (class class class)co 6650  Xcixp 7908  supcsup 8346  0cc0 9936  *cxr 10073   < clt 10074  Basecbs 15857  s cress 15858  distcds 15950  Xscprds 16106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-prds 16108
This theorem is referenced by:  resspwsds  22177  prdsbnd2  33594
  Copyright terms: Public domain W3C validator