MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem0 Structured version   Visualization version   GIF version

Theorem prmlem0 15812
Description: Lemma for prmlem1 15814 and prmlem2 15827. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
prmlem0.1 ((¬ 2 ∥ 𝑀𝑥 ∈ (ℤ𝑀)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
prmlem0.2 (𝐾 ∈ ℙ → ¬ 𝐾𝑁)
prmlem0.3 (𝐾 + 2) = 𝑀
Assertion
Ref Expression
prmlem0 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
Distinct variable group:   𝑥,𝑁
Allowed substitution hints:   𝐾(𝑥)   𝑀(𝑥)

Proof of Theorem prmlem0
StepHypRef Expression
1 eldifi 3732 . . . . 5 (𝑥 ∈ (ℙ ∖ {2}) → 𝑥 ∈ ℙ)
2 prmlem0.2 . . . . . 6 (𝐾 ∈ ℙ → ¬ 𝐾𝑁)
3 eleq1 2689 . . . . . . 7 (𝑥 = 𝐾 → (𝑥 ∈ ℙ ↔ 𝐾 ∈ ℙ))
4 breq1 4656 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥𝑁𝐾𝑁))
54notbid 308 . . . . . . 7 (𝑥 = 𝐾 → (¬ 𝑥𝑁 ↔ ¬ 𝐾𝑁))
63, 5imbi12d 334 . . . . . 6 (𝑥 = 𝐾 → ((𝑥 ∈ ℙ → ¬ 𝑥𝑁) ↔ (𝐾 ∈ ℙ → ¬ 𝐾𝑁)))
72, 6mpbiri 248 . . . . 5 (𝑥 = 𝐾 → (𝑥 ∈ ℙ → ¬ 𝑥𝑁))
81, 7syl5 34 . . . 4 (𝑥 = 𝐾 → (𝑥 ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
98adantrd 484 . . 3 (𝑥 = 𝐾 → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
109a1i 11 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = 𝐾 → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
11 uzp1 11721 . . 3 (𝑥 ∈ (ℤ‘(𝐾 + 1)) → (𝑥 = (𝐾 + 1) ∨ 𝑥 ∈ (ℤ‘((𝐾 + 1) + 1))))
12 eleq1 2689 . . . . . . . 8 (𝑥 = (𝐾 + 1) → (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝐾 + 1) ∈ (ℙ ∖ {2})))
1312adantl 482 . . . . . . 7 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝐾 + 1) ∈ (ℙ ∖ {2})))
14 eldifsn 4317 . . . . . . . . 9 ((𝐾 + 1) ∈ (ℙ ∖ {2}) ↔ ((𝐾 + 1) ∈ ℙ ∧ (𝐾 + 1) ≠ 2))
15 eluzel2 11692 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℤ𝐾) → 𝐾 ∈ ℤ)
1615adantl 482 . . . . . . . . . . . . . . . 16 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ ℤ)
17 simpl 473 . . . . . . . . . . . . . . . 16 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ¬ 2 ∥ 𝐾)
18 1z 11407 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
19 n2dvds1 15104 . . . . . . . . . . . . . . . . 17 ¬ 2 ∥ 1
20 opoe 15087 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝐾 + 1))
2118, 19, 20mpanr12 721 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → 2 ∥ (𝐾 + 1))
2216, 17, 21syl2anc 693 . . . . . . . . . . . . . . 15 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 2 ∥ (𝐾 + 1))
2322adantr 481 . . . . . . . . . . . . . 14 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → 2 ∥ (𝐾 + 1))
24 2z 11409 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
25 uzid 11702 . . . . . . . . . . . . . . . 16 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
2624, 25mp1i 13 . . . . . . . . . . . . . . 15 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 2 ∈ (ℤ‘2))
27 dvdsprm 15415 . . . . . . . . . . . . . . 15 ((2 ∈ (ℤ‘2) ∧ (𝐾 + 1) ∈ ℙ) → (2 ∥ (𝐾 + 1) ↔ 2 = (𝐾 + 1)))
2826, 27sylan 488 . . . . . . . . . . . . . 14 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (2 ∥ (𝐾 + 1) ↔ 2 = (𝐾 + 1)))
2923, 28mpbid 222 . . . . . . . . . . . . 13 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → 2 = (𝐾 + 1))
3029eqcomd 2628 . . . . . . . . . . . 12 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (𝐾 + 1) = 2)
3130a1d 25 . . . . . . . . . . 11 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (𝑥𝑁 → (𝐾 + 1) = 2))
3231necon3ad 2807 . . . . . . . . . 10 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → ((𝐾 + 1) ≠ 2 → ¬ 𝑥𝑁))
3332expimpd 629 . . . . . . . . 9 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (((𝐾 + 1) ∈ ℙ ∧ (𝐾 + 1) ≠ 2) → ¬ 𝑥𝑁))
3414, 33syl5bi 232 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3534adantr 481 . . . . . . 7 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → ((𝐾 + 1) ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3613, 35sylbid 230 . . . . . 6 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → (𝑥 ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3736adantrd 484 . . . . 5 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
3837ex 450 . . . 4 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = (𝐾 + 1) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
3916zcnd 11483 . . . . . . . . 9 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ ℂ)
40 ax-1cn 9994 . . . . . . . . . 10 1 ∈ ℂ
41 addass 10023 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
4240, 40, 41mp3an23 1416 . . . . . . . . 9 (𝐾 ∈ ℂ → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
4339, 42syl 17 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
44 1p1e2 11134 . . . . . . . . . 10 (1 + 1) = 2
4544oveq2i 6661 . . . . . . . . 9 (𝐾 + (1 + 1)) = (𝐾 + 2)
46 prmlem0.3 . . . . . . . . 9 (𝐾 + 2) = 𝑀
4745, 46eqtri 2644 . . . . . . . 8 (𝐾 + (1 + 1)) = 𝑀
4843, 47syl6eq 2672 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) + 1) = 𝑀)
4948fveq2d 6195 . . . . . 6 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (ℤ‘((𝐾 + 1) + 1)) = (ℤ𝑀))
5049eleq2d 2687 . . . . 5 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘((𝐾 + 1) + 1)) ↔ 𝑥 ∈ (ℤ𝑀)))
51 dvdsaddr 15025 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ 2 ∥ (𝐾 + 2)))
5224, 16, 51sylancr 695 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (2 ∥ 𝐾 ↔ 2 ∥ (𝐾 + 2)))
5346breq2i 4661 . . . . . . . 8 (2 ∥ (𝐾 + 2) ↔ 2 ∥ 𝑀)
5452, 53syl6bb 276 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (2 ∥ 𝐾 ↔ 2 ∥ 𝑀))
5517, 54mtbid 314 . . . . . 6 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ¬ 2 ∥ 𝑀)
56 prmlem0.1 . . . . . . 7 ((¬ 2 ∥ 𝑀𝑥 ∈ (ℤ𝑀)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
5756ex 450 . . . . . 6 (¬ 2 ∥ 𝑀 → (𝑥 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
5855, 57syl 17 . . . . 5 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
5950, 58sylbid 230 . . . 4 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘((𝐾 + 1) + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
6038, 59jaod 395 . . 3 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 = (𝐾 + 1) ∨ 𝑥 ∈ (ℤ‘((𝐾 + 1) + 1))) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
6111, 60syl5 34 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘(𝐾 + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
62 uzp1 11721 . . 3 (𝑥 ∈ (ℤ𝐾) → (𝑥 = 𝐾𝑥 ∈ (ℤ‘(𝐾 + 1))))
6362adantl 482 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = 𝐾𝑥 ∈ (ℤ‘(𝐾 + 1))))
6410, 61, 63mpjaod 396 1 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939  cle 10075  2c2 11070  cz 11377  cuz 11687  cexp 12860  cdvds 14983  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386
This theorem is referenced by:  prmlem1a  15813  prmlem2  15827
  Copyright terms: Public domain W3C validator