| Step | Hyp | Ref
| Expression |
| 1 | | eleq1 2689 |
. . . . 5
⊢ (𝑚 = 𝑘 → (𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ)) |
| 2 | | oveq2 6658 |
. . . . 5
⊢ (𝑚 = 𝑘 → (1 / 𝑚) = (1 / 𝑘)) |
| 3 | 1, 2 | ifbieq1d 4109 |
. . . 4
⊢ (𝑚 = 𝑘 → if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 4 | 3 | cbvmptv 4750 |
. . 3
⊢ (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)) = (𝑘 ∈ ℕ ↦ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 5 | 4 | prmreclem6 15625 |
. 2
⊢ ¬
seq1( + , (𝑚 ∈ ℕ
↦ if(𝑚 ∈
ℙ, (1 / 𝑚), 0)))
∈ dom ⇝ |
| 6 | | inss2 3834 |
. . . . . . . . 9
⊢ (ℙ
∩ (1...𝑛)) ⊆
(1...𝑛) |
| 7 | 6 | sseli 3599 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (ℙ ∩
(1...𝑛)) → 𝑘 ∈ (1...𝑛)) |
| 8 | | elfznn 12370 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ) |
| 9 | | nnrecre 11057 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ) |
| 10 | 9 | recnd 10068 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℂ) |
| 11 | 7, 8, 10 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (ℙ ∩
(1...𝑛)) → (1 / 𝑘) ∈
ℂ) |
| 12 | 11 | rgen 2922 |
. . . . . . . . 9
⊢
∀𝑘 ∈
(ℙ ∩ (1...𝑛))(1 /
𝑘) ∈
ℂ |
| 13 | 6, 12 | pm3.2i 471 |
. . . . . . . 8
⊢ ((ℙ
∩ (1...𝑛)) ⊆
(1...𝑛) ∧ ∀𝑘 ∈ (ℙ ∩
(1...𝑛))(1 / 𝑘) ∈
ℂ) |
| 14 | | fzfi 12771 |
. . . . . . . . 9
⊢
(1...𝑛) ∈
Fin |
| 15 | 14 | olci 406 |
. . . . . . . 8
⊢
((1...𝑛) ⊆
(ℤ≥‘1) ∨ (1...𝑛) ∈ Fin) |
| 16 | | sumss2 14457 |
. . . . . . . 8
⊢
((((ℙ ∩ (1...𝑛)) ⊆ (1...𝑛) ∧ ∀𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ) ∧ ((1...𝑛) ⊆
(ℤ≥‘1) ∨ (1...𝑛) ∈ Fin)) → Σ𝑘 ∈ (ℙ ∩
(1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0)) |
| 17 | 13, 15, 16 | mp2an 708 |
. . . . . . 7
⊢
Σ𝑘 ∈
(ℙ ∩ (1...𝑛))(1 /
𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0) |
| 18 | | elin 3796 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (ℙ ∩
(1...𝑛)) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ∈ (1...𝑛))) |
| 19 | 18 | rbaib 947 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑛) → (𝑘 ∈ (ℙ ∩ (1...𝑛)) ↔ 𝑘 ∈ ℙ)) |
| 20 | 19 | ifbid 4108 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑛) → if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 21 | 20 | sumeq2i 14429 |
. . . . . . 7
⊢
Σ𝑘 ∈
(1...𝑛)if(𝑘 ∈ (ℙ ∩
(1...𝑛)), (1 / 𝑘), 0) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) |
| 22 | 17, 21 | eqtri 2644 |
. . . . . 6
⊢
Σ𝑘 ∈
(ℙ ∩ (1...𝑛))(1 /
𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) |
| 23 | 8 | adantl 482 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ) |
| 24 | | prmnn 15388 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℙ → 𝑘 ∈
ℕ) |
| 25 | 24, 10 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℙ → (1 /
𝑘) ∈
ℂ) |
| 26 | 25 | adantl 482 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℙ) → (1 / 𝑘) ∈ ℂ) |
| 27 | | 0cnd 10033 |
. . . . . . . . . 10
⊢
((⊤ ∧ ¬ 𝑘 ∈ ℙ) → 0 ∈
ℂ) |
| 28 | 26, 27 | ifclda 4120 |
. . . . . . . . 9
⊢ (⊤
→ if(𝑘 ∈ ℙ,
(1 / 𝑘), 0) ∈
ℂ) |
| 29 | 28 | trud 1493 |
. . . . . . . 8
⊢ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℂ |
| 30 | 4 | fvmpt2 6291 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ) →
((𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ, (1 /
𝑚), 0))‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 31 | 23, 29, 30 | sylancl 694 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 32 | | id 22 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ) |
| 33 | | nnuz 11723 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 34 | 32, 33 | syl6eleq 2711 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
(ℤ≥‘1)) |
| 35 | 29 | a1i 11 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ) |
| 36 | 31, 34, 35 | fsumser 14461 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛)) |
| 37 | 22, 36 | syl5eq 2668 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
Σ𝑘 ∈ (ℙ
∩ (1...𝑛))(1 / 𝑘) = (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛)) |
| 38 | 37 | mpteq2ia 4740 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦
Σ𝑘 ∈ (ℙ
∩ (1...𝑛))(1 / 𝑘)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛)) |
| 39 | | prmrec.f |
. . . 4
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩
(1...𝑛))(1 / 𝑘)) |
| 40 | | 1z 11407 |
. . . . . . 7
⊢ 1 ∈
ℤ |
| 41 | | seqfn 12813 |
. . . . . . 7
⊢ (1 ∈
ℤ → seq1( + , (𝑚
∈ ℕ ↦ if(𝑚
∈ ℙ, (1 / 𝑚),
0))) Fn (ℤ≥‘1)) |
| 42 | 40, 41 | ax-mp 5 |
. . . . . 6
⊢ seq1( + ,
(𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ, (1 /
𝑚), 0))) Fn
(ℤ≥‘1) |
| 43 | 33 | fneq2i 5986 |
. . . . . 6
⊢ (seq1( +
, (𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ, (1 /
𝑚), 0))) Fn ℕ ↔
seq1( + , (𝑚 ∈ ℕ
↦ if(𝑚 ∈
ℙ, (1 / 𝑚), 0))) Fn
(ℤ≥‘1)) |
| 44 | 42, 43 | mpbir 221 |
. . . . 5
⊢ seq1( + ,
(𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ, (1 /
𝑚), 0))) Fn
ℕ |
| 45 | | dffn5 6241 |
. . . . 5
⊢ (seq1( +
, (𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ, (1 /
𝑚), 0))) Fn ℕ ↔
seq1( + , (𝑚 ∈ ℕ
↦ if(𝑚 ∈
ℙ, (1 / 𝑚), 0))) =
(𝑛 ∈ ℕ ↦
(seq1( + , (𝑚 ∈
ℕ ↦ if(𝑚 ∈
ℙ, (1 / 𝑚),
0)))‘𝑛))) |
| 46 | 44, 45 | mpbi 220 |
. . . 4
⊢ seq1( + ,
(𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ, (1 /
𝑚), 0))) = (𝑛 ∈ ℕ ↦ (seq1( +
, (𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ, (1 /
𝑚), 0)))‘𝑛)) |
| 47 | 38, 39, 46 | 3eqtr4i 2654 |
. . 3
⊢ 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) |
| 48 | 47 | eleq1i 2692 |
. 2
⊢ (𝐹 ∈ dom ⇝ ↔ seq1(
+ , (𝑚 ∈ ℕ
↦ if(𝑚 ∈
ℙ, (1 / 𝑚), 0)))
∈ dom ⇝ ) |
| 49 | 5, 48 | mtbir 313 |
1
⊢ ¬
𝐹 ∈ dom
⇝ |