| Step | Hyp | Ref
| Expression |
| 1 | | psrring.s |
. . . 4
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | eqid 2622 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 3 | | psr1cl.d |
. . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 4 | | psr1cl.b |
. . . 4
⊢ 𝐵 = (Base‘𝑆) |
| 5 | | psrlidm.t |
. . . . 5
⊢ · =
(.r‘𝑆) |
| 6 | | psrring.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 7 | | psrlidm.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 8 | | psrring.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 9 | | psr1cl.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
| 10 | | psr1cl.o |
. . . . . 6
⊢ 1 =
(1r‘𝑅) |
| 11 | | psr1cl.u |
. . . . . 6
⊢ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) |
| 12 | 1, 8, 6, 3, 9, 10,
11, 4 | psr1cl 19402 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| 13 | 1, 4, 5, 6, 7, 12 | psrmulcl 19388 |
. . . 4
⊢ (𝜑 → (𝑋 · 𝑈) ∈ 𝐵) |
| 14 | 1, 2, 3, 4, 13 | psrelbas 19379 |
. . 3
⊢ (𝜑 → (𝑋 · 𝑈):𝐷⟶(Base‘𝑅)) |
| 15 | 14 | ffnd 6046 |
. 2
⊢ (𝜑 → (𝑋 · 𝑈) Fn 𝐷) |
| 16 | 1, 2, 3, 4, 7 | psrelbas 19379 |
. . 3
⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
| 17 | 16 | ffnd 6046 |
. 2
⊢ (𝜑 → 𝑋 Fn 𝐷) |
| 18 | | eqid 2622 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 19 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑋 ∈ 𝐵) |
| 20 | 12 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑈 ∈ 𝐵) |
| 21 | | simpr 477 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) |
| 22 | 1, 4, 18, 5, 3, 19, 20, 21 | psrmulval 19386 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))))) |
| 23 | 8 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
| 24 | 3 | psrbagf 19365 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑦 ∈ 𝐷) → 𝑦:𝐼⟶ℕ0) |
| 25 | 8, 24 | sylan 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦:𝐼⟶ℕ0) |
| 26 | | nn0re 11301 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ∈
ℝ) |
| 27 | 26 | leidd 10594 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ≤ 𝑧) |
| 28 | 27 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ℕ0) → 𝑧 ≤ 𝑧) |
| 29 | 23, 25, 28 | caofref 6923 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∘𝑟 ≤ 𝑦) |
| 30 | | breq1 4656 |
. . . . . . . . 9
⊢ (𝑔 = 𝑦 → (𝑔 ∘𝑟 ≤ 𝑦 ↔ 𝑦 ∘𝑟 ≤ 𝑦)) |
| 31 | 30 | elrab 3363 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↔ (𝑦 ∈ 𝐷 ∧ 𝑦 ∘𝑟 ≤ 𝑦)) |
| 32 | 21, 29, 31 | sylanbrc 698 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) |
| 33 | 32 | snssd 4340 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {𝑦} ⊆ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) |
| 34 | 33 | resmptd 5452 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))) ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧))))) |
| 35 | 34 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))))) |
| 36 | | ringcmn 18581 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
| 37 | 6, 36 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 38 | 37 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ CMnd) |
| 39 | | ovex 6678 |
. . . . . . 7
⊢
(ℕ0 ↑𝑚 𝐼) ∈ V |
| 40 | 3, 39 | rab2ex 4816 |
. . . . . 6
⊢ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∈ V |
| 41 | 40 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∈ V) |
| 42 | 6 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → 𝑅 ∈ Ring) |
| 43 | 16 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → 𝑋:𝐷⟶(Base‘𝑅)) |
| 44 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) |
| 45 | | breq1 4656 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑧 → (𝑔 ∘𝑟 ≤ 𝑦 ↔ 𝑧 ∘𝑟 ≤ 𝑦)) |
| 46 | 45 | elrab 3363 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↔ (𝑧 ∈ 𝐷 ∧ 𝑧 ∘𝑟 ≤ 𝑦)) |
| 47 | 44, 46 | sylib 208 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → (𝑧 ∈ 𝐷 ∧ 𝑧 ∘𝑟 ≤ 𝑦)) |
| 48 | 47 | simpld 475 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → 𝑧 ∈ 𝐷) |
| 49 | 43, 48 | ffvelrnd 6360 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → (𝑋‘𝑧) ∈ (Base‘𝑅)) |
| 50 | 1, 2, 3, 4, 20 | psrelbas 19379 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑈:𝐷⟶(Base‘𝑅)) |
| 51 | 50 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → 𝑈:𝐷⟶(Base‘𝑅)) |
| 52 | 8 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → 𝐼 ∈ 𝑉) |
| 53 | 21 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → 𝑦 ∈ 𝐷) |
| 54 | 3 | psrbagf 19365 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝐷) → 𝑧:𝐼⟶ℕ0) |
| 55 | 52, 48, 54 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → 𝑧:𝐼⟶ℕ0) |
| 56 | 47 | simprd 479 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → 𝑧 ∘𝑟 ≤ 𝑦) |
| 57 | 3 | psrbagcon 19371 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ 𝐷 ∧ 𝑧:𝐼⟶ℕ0 ∧ 𝑧 ∘𝑟
≤ 𝑦)) → ((𝑦 ∘𝑓
− 𝑧) ∈ 𝐷 ∧ (𝑦 ∘𝑓 − 𝑧) ∘𝑟
≤ 𝑦)) |
| 58 | 52, 53, 55, 56, 57 | syl13anc 1328 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → ((𝑦 ∘𝑓 − 𝑧) ∈ 𝐷 ∧ (𝑦 ∘𝑓 − 𝑧) ∘𝑟
≤ 𝑦)) |
| 59 | 58 | simpld 475 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → (𝑦 ∘𝑓 − 𝑧) ∈ 𝐷) |
| 60 | 51, 59 | ffvelrnd 6360 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → (𝑈‘(𝑦 ∘𝑓 − 𝑧)) ∈ (Base‘𝑅)) |
| 61 | 2, 18 | ringcl 18561 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑧) ∈ (Base‘𝑅) ∧ (𝑈‘(𝑦 ∘𝑓 − 𝑧)) ∈ (Base‘𝑅)) → ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧))) ∈ (Base‘𝑅)) |
| 62 | 42, 49, 60, 61 | syl3anc 1326 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧))) ∈ (Base‘𝑅)) |
| 63 | | eqid 2622 |
. . . . . 6
⊢ (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))) = (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))) |
| 64 | 62, 63 | fmptd 6385 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))):{𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}⟶(Base‘𝑅)) |
| 65 | | eldifi 3732 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∖ {𝑦}) → 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) |
| 66 | 65, 59 | sylan2 491 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∖ {𝑦})) → (𝑦 ∘𝑓 − 𝑧) ∈ 𝐷) |
| 67 | | eqeq1 2626 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 ∘𝑓 − 𝑧) → (𝑥 = (𝐼 × {0}) ↔ (𝑦 ∘𝑓 − 𝑧) = (𝐼 × {0}))) |
| 68 | 67 | ifbid 4108 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 ∘𝑓 − 𝑧) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if((𝑦 ∘𝑓 − 𝑧) = (𝐼 × {0}), 1 , 0 )) |
| 69 | | fvex 6201 |
. . . . . . . . . . . . 13
⊢
(1r‘𝑅) ∈ V |
| 70 | 10, 69 | eqeltri 2697 |
. . . . . . . . . . . 12
⊢ 1 ∈
V |
| 71 | | fvex 6201 |
. . . . . . . . . . . . 13
⊢
(0g‘𝑅) ∈ V |
| 72 | 9, 71 | eqeltri 2697 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
| 73 | 70, 72 | ifex 4156 |
. . . . . . . . . . 11
⊢ if((𝑦 ∘𝑓
− 𝑧) = (𝐼 × {0}), 1 , 0 ) ∈
V |
| 74 | 68, 11, 73 | fvmpt 6282 |
. . . . . . . . . 10
⊢ ((𝑦 ∘𝑓
− 𝑧) ∈ 𝐷 → (𝑈‘(𝑦 ∘𝑓 − 𝑧)) = if((𝑦 ∘𝑓 − 𝑧) = (𝐼 × {0}), 1 , 0 )) |
| 75 | 66, 74 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∖ {𝑦})) → (𝑈‘(𝑦 ∘𝑓 − 𝑧)) = if((𝑦 ∘𝑓 − 𝑧) = (𝐼 × {0}), 1 , 0 )) |
| 76 | | eldifsni 4320 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∖ {𝑦}) → 𝑧 ≠ 𝑦) |
| 77 | 76 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∖ {𝑦})) → 𝑧 ≠ 𝑦) |
| 78 | 77 | necomd 2849 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∖ {𝑦})) → 𝑦 ≠ 𝑧) |
| 79 | | nn0sscn 11297 |
. . . . . . . . . . . . . . . 16
⊢
ℕ0 ⊆ ℂ |
| 80 | | fss 6056 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦:𝐼⟶ℕ0 ∧
ℕ0 ⊆ ℂ) → 𝑦:𝐼⟶ℂ) |
| 81 | 25, 79, 80 | sylancl 694 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦:𝐼⟶ℂ) |
| 82 | 81 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → 𝑦:𝐼⟶ℂ) |
| 83 | | fss 6056 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧:𝐼⟶ℕ0 ∧
ℕ0 ⊆ ℂ) → 𝑧:𝐼⟶ℂ) |
| 84 | 55, 79, 83 | sylancl 694 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → 𝑧:𝐼⟶ℂ) |
| 85 | | ofsubeq0 11017 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑦:𝐼⟶ℂ ∧ 𝑧:𝐼⟶ℂ) → ((𝑦 ∘𝑓 − 𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧)) |
| 86 | 52, 82, 84, 85 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → ((𝑦 ∘𝑓 − 𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧)) |
| 87 | 65, 86 | sylan2 491 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∖ {𝑦})) → ((𝑦 ∘𝑓 − 𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧)) |
| 88 | 87 | necon3bbid 2831 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∖ {𝑦})) → (¬ (𝑦 ∘𝑓 − 𝑧) = (𝐼 × {0}) ↔ 𝑦 ≠ 𝑧)) |
| 89 | 78, 88 | mpbird 247 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∖ {𝑦})) → ¬ (𝑦 ∘𝑓 − 𝑧) = (𝐼 × {0})) |
| 90 | 89 | iffalsed 4097 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∖ {𝑦})) → if((𝑦 ∘𝑓 − 𝑧) = (𝐼 × {0}), 1 , 0 ) = 0 ) |
| 91 | 75, 90 | eqtrd 2656 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∖ {𝑦})) → (𝑈‘(𝑦 ∘𝑓 − 𝑧)) = 0 ) |
| 92 | 91 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∖ {𝑦})) → ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧))) = ((𝑋‘𝑧)(.r‘𝑅) 0 )) |
| 93 | 2, 18, 9 | ringrz 18588 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑧) ∈ (Base‘𝑅)) → ((𝑋‘𝑧)(.r‘𝑅) 0 ) = 0 ) |
| 94 | 42, 49, 93 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦}) → ((𝑋‘𝑧)(.r‘𝑅) 0 ) = 0 ) |
| 95 | 65, 94 | sylan2 491 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∖ {𝑦})) → ((𝑋‘𝑧)(.r‘𝑅) 0 ) = 0 ) |
| 96 | 92, 95 | eqtrd 2656 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∖ {𝑦})) → ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧))) = 0 ) |
| 97 | 96, 41 | suppss2 7329 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))) supp 0 ) ⊆ {𝑦}) |
| 98 | | mptexg 6484 |
. . . . . . 7
⊢ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ∈ V → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))) ∈ V) |
| 99 | 41, 98 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))) ∈ V) |
| 100 | | funmpt 5926 |
. . . . . . 7
⊢ Fun
(𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))) |
| 101 | 100 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → Fun (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧))))) |
| 102 | 72 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 0 ∈ V) |
| 103 | | snfi 8038 |
. . . . . . 7
⊢ {𝑦} ∈ Fin |
| 104 | 103 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {𝑦} ∈ Fin) |
| 105 | | suppssfifsupp 8290 |
. . . . . 6
⊢ ((((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))) ∧ 0 ∈ V) ∧ ({𝑦} ∈ Fin ∧ ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))) supp 0 ) ⊆ {𝑦})) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))) finSupp 0 ) |
| 106 | 99, 101, 102, 104, 97, 105 | syl32anc 1334 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))) finSupp 0 ) |
| 107 | 2, 9, 38, 41, 64, 97, 106 | gsumres 18314 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧)))))) |
| 108 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ Ring) |
| 109 | | ringmnd 18556 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 110 | 108, 109 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ Mnd) |
| 111 | | eqid 2622 |
. . . . . . . . . . 11
⊢ 𝑦 = 𝑦 |
| 112 | | ofsubeq0 11017 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑦:𝐼⟶ℂ ∧ 𝑦:𝐼⟶ℂ) → ((𝑦 ∘𝑓 − 𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦)) |
| 113 | 23, 81, 81, 112 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑦 ∘𝑓 − 𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦)) |
| 114 | 111, 113 | mpbiri 248 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑦 ∘𝑓 − 𝑦) = (𝐼 × {0})) |
| 115 | 114 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑈‘(𝑦 ∘𝑓 − 𝑦)) = (𝑈‘(𝐼 × {0}))) |
| 116 | | fconstmpt 5163 |
. . . . . . . . . . . 12
⊢ (𝐼 × {0}) = (𝑤 ∈ 𝐼 ↦ 0) |
| 117 | 3 | fczpsrbag 19367 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ 𝑉 → (𝑤 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
| 118 | 8, 117 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑤 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
| 119 | 116, 118 | syl5eqel 2705 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐼 × {0}) ∈ 𝐷) |
| 120 | 119 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐼 × {0}) ∈ 𝐷) |
| 121 | | iftrue 4092 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 ) |
| 122 | 121, 11, 70 | fvmpt 6282 |
. . . . . . . . . 10
⊢ ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 ) |
| 123 | 120, 122 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑈‘(𝐼 × {0})) = 1 ) |
| 124 | 115, 123 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑈‘(𝑦 ∘𝑓 − 𝑦)) = 1 ) |
| 125 | 124 | oveq2d 6666 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑦))) = ((𝑋‘𝑦)(.r‘𝑅) 1 )) |
| 126 | 16 | ffvelrnda 6359 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑋‘𝑦) ∈ (Base‘𝑅)) |
| 127 | 2, 18, 10 | ringridm 18572 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑦) ∈ (Base‘𝑅)) → ((𝑋‘𝑦)(.r‘𝑅) 1 ) = (𝑋‘𝑦)) |
| 128 | 108, 126,
127 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑋‘𝑦)(.r‘𝑅) 1 ) = (𝑋‘𝑦)) |
| 129 | 125, 128 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑦))) = (𝑋‘𝑦)) |
| 130 | 129, 126 | eqeltrd 2701 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑦))) ∈ (Base‘𝑅)) |
| 131 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑋‘𝑧) = (𝑋‘𝑦)) |
| 132 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑦 ∘𝑓 − 𝑧) = (𝑦 ∘𝑓 − 𝑦)) |
| 133 | 132 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑈‘(𝑦 ∘𝑓 − 𝑧)) = (𝑈‘(𝑦 ∘𝑓 − 𝑦))) |
| 134 | 131, 133 | oveq12d 6668 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧))) = ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑦)))) |
| 135 | 2, 134 | gsumsn 18354 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝑦 ∈ 𝐷 ∧ ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑦))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧))))) = ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑦)))) |
| 136 | 110, 21, 130, 135 | syl3anc 1326 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧))))) = ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑦)))) |
| 137 | 35, 107, 136 | 3eqtr3d 2664 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑧))))) = ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘𝑓 − 𝑦)))) |
| 138 | 22, 137, 129 | 3eqtrd 2660 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑋‘𝑦)) |
| 139 | 15, 17, 138 | eqfnfvd 6314 |
1
⊢ (𝜑 → (𝑋 · 𝑈) = 𝑋) |