| Step | Hyp | Ref
| Expression |
| 1 | | psrring.s |
. . . 4
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | eqid 2622 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 3 | | psrass.d |
. . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 4 | | psrass.b |
. . . 4
⊢ 𝐵 = (Base‘𝑆) |
| 5 | | psrass.t |
. . . . 5
⊢ × =
(.r‘𝑆) |
| 6 | | psrring.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 7 | | psrass.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 8 | | psrass.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 9 | 1, 4, 5, 6, 7, 8 | psrmulcl 19388 |
. . . . 5
⊢ (𝜑 → (𝑋 × 𝑌) ∈ 𝐵) |
| 10 | | psrass.z |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| 11 | 1, 4, 5, 6, 9, 10 | psrmulcl 19388 |
. . . 4
⊢ (𝜑 → ((𝑋 × 𝑌) × 𝑍) ∈ 𝐵) |
| 12 | 1, 2, 3, 4, 11 | psrelbas 19379 |
. . 3
⊢ (𝜑 → ((𝑋 × 𝑌) × 𝑍):𝐷⟶(Base‘𝑅)) |
| 13 | 12 | ffnd 6046 |
. 2
⊢ (𝜑 → ((𝑋 × 𝑌) × 𝑍) Fn 𝐷) |
| 14 | 1, 4, 5, 6, 8, 10 | psrmulcl 19388 |
. . . . 5
⊢ (𝜑 → (𝑌 × 𝑍) ∈ 𝐵) |
| 15 | 1, 4, 5, 6, 7, 14 | psrmulcl 19388 |
. . . 4
⊢ (𝜑 → (𝑋 × (𝑌 × 𝑍)) ∈ 𝐵) |
| 16 | 1, 2, 3, 4, 15 | psrelbas 19379 |
. . 3
⊢ (𝜑 → (𝑋 × (𝑌 × 𝑍)):𝐷⟶(Base‘𝑅)) |
| 17 | 16 | ffnd 6046 |
. 2
⊢ (𝜑 → (𝑋 × (𝑌 × 𝑍)) Fn 𝐷) |
| 18 | | eqid 2622 |
. . . . 5
⊢ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} = {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} |
| 19 | | psrring.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 20 | 19 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
| 21 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐷) |
| 22 | | ringcmn 18581 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
| 23 | 6, 22 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 24 | 23 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑅 ∈ CMnd) |
| 25 | 6 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑅 ∈ Ring) |
| 26 | 25 | adantr 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → 𝑅 ∈ Ring) |
| 27 | 1, 2, 3, 4, 7 | psrelbas 19379 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
| 28 | 27 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑋:𝐷⟶(Base‘𝑅)) |
| 29 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) |
| 30 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑗 → (𝑔 ∘𝑟 ≤ 𝑥 ↔ 𝑗 ∘𝑟 ≤ 𝑥)) |
| 31 | 30 | elrab 3363 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↔ (𝑗 ∈ 𝐷 ∧ 𝑗 ∘𝑟 ≤ 𝑥)) |
| 32 | 29, 31 | sylib 208 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → (𝑗 ∈ 𝐷 ∧ 𝑗 ∘𝑟 ≤ 𝑥)) |
| 33 | 32 | simpld 475 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑗 ∈ 𝐷) |
| 34 | 28, 33 | ffvelrnd 6360 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → (𝑋‘𝑗) ∈ (Base‘𝑅)) |
| 35 | 34 | adantr 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → (𝑋‘𝑗) ∈ (Base‘𝑅)) |
| 36 | 1, 2, 3, 4, 8 | psrelbas 19379 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌:𝐷⟶(Base‘𝑅)) |
| 37 | 36 | ad3antrrr 766 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → 𝑌:𝐷⟶(Base‘𝑅)) |
| 38 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) |
| 39 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑛 → (ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗) ↔ 𝑛 ∘𝑟
≤ (𝑥
∘𝑓 − 𝑗))) |
| 40 | 39 | elrab 3363 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↔ (𝑛 ∈ 𝐷 ∧ 𝑛 ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗))) |
| 41 | 38, 40 | sylib 208 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → (𝑛 ∈ 𝐷 ∧ 𝑛 ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗))) |
| 42 | 41 | simpld 475 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → 𝑛 ∈ 𝐷) |
| 43 | 37, 42 | ffvelrnd 6360 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → (𝑌‘𝑛) ∈ (Base‘𝑅)) |
| 44 | 1, 2, 3, 4, 10 | psrelbas 19379 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍:𝐷⟶(Base‘𝑅)) |
| 45 | 44 | ad3antrrr 766 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → 𝑍:𝐷⟶(Base‘𝑅)) |
| 46 | 19 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝐼 ∈ 𝑉) |
| 47 | 46 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → 𝐼 ∈ 𝑉) |
| 48 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑥 ∈ 𝐷) |
| 49 | 3 | psrbagf 19365 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐷) → 𝑗:𝐼⟶ℕ0) |
| 50 | 46, 33, 49 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑗:𝐼⟶ℕ0) |
| 51 | 32 | simprd 479 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑗 ∘𝑟 ≤ 𝑥) |
| 52 | 3 | psrbagcon 19371 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑗:𝐼⟶ℕ0 ∧ 𝑗 ∘𝑟
≤ 𝑥)) → ((𝑥 ∘𝑓
− 𝑗) ∈ 𝐷 ∧ (𝑥 ∘𝑓 − 𝑗) ∘𝑟
≤ 𝑥)) |
| 53 | 46, 48, 50, 51, 52 | syl13anc 1328 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → ((𝑥 ∘𝑓 − 𝑗) ∈ 𝐷 ∧ (𝑥 ∘𝑓 − 𝑗) ∘𝑟
≤ 𝑥)) |
| 54 | 53 | simpld 475 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → (𝑥 ∘𝑓 − 𝑗) ∈ 𝐷) |
| 55 | 54 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → (𝑥 ∘𝑓
− 𝑗) ∈ 𝐷) |
| 56 | 3 | psrbagf 19365 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑛 ∈ 𝐷) → 𝑛:𝐼⟶ℕ0) |
| 57 | 47, 42, 56 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → 𝑛:𝐼⟶ℕ0) |
| 58 | 41 | simprd 479 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → 𝑛 ∘𝑟
≤ (𝑥
∘𝑓 − 𝑗)) |
| 59 | 3 | psrbagcon 19371 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ ((𝑥 ∘𝑓 − 𝑗) ∈ 𝐷 ∧ 𝑛:𝐼⟶ℕ0 ∧ 𝑛 ∘𝑟
≤ (𝑥
∘𝑓 − 𝑗))) → (((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛) ∈ 𝐷 ∧ ((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)
∘𝑟 ≤ (𝑥 ∘𝑓 − 𝑗))) |
| 60 | 47, 55, 57, 58, 59 | syl13anc 1328 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) →
(((𝑥
∘𝑓 − 𝑗) ∘𝑓 − 𝑛) ∈ 𝐷 ∧ ((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)
∘𝑟 ≤ (𝑥 ∘𝑓 − 𝑗))) |
| 61 | 60 | simpld 475 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → ((𝑥 ∘𝑓
− 𝑗)
∘𝑓 − 𝑛) ∈ 𝐷) |
| 62 | 45, 61 | ffvelrnd 6360 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → (𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)) ∈
(Base‘𝑅)) |
| 63 | | eqid 2622 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 64 | 2, 63 | ringcl 18561 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑌‘𝑛) ∈ (Base‘𝑅) ∧ (𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)) ∈
(Base‘𝑅)) →
((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛))) ∈
(Base‘𝑅)) |
| 65 | 26, 43, 62, 64 | syl3anc 1326 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛))) ∈
(Base‘𝑅)) |
| 66 | 2, 63 | ringcl 18561 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑗) ∈ (Base‘𝑅) ∧ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛))) ∈
(Base‘𝑅)) →
((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) ∈
(Base‘𝑅)) |
| 67 | 26, 35, 65, 66 | syl3anc 1326 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) → ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) ∈
(Base‘𝑅)) |
| 68 | 67 | anasss 679 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)})) →
((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) ∈
(Base‘𝑅)) |
| 69 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑛 = (𝑘 ∘𝑓 − 𝑗) → (𝑌‘𝑛) = (𝑌‘(𝑘 ∘𝑓 − 𝑗))) |
| 70 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑛 = (𝑘 ∘𝑓 − 𝑗) → ((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛) = ((𝑥 ∘𝑓
− 𝑗)
∘𝑓 − (𝑘 ∘𝑓 − 𝑗))) |
| 71 | 70 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑛 = (𝑘 ∘𝑓 − 𝑗) → (𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)) = (𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗)))) |
| 72 | 69, 71 | oveq12d 6668 |
. . . . . 6
⊢ (𝑛 = (𝑘 ∘𝑓 − 𝑗) → ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛))) = ((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗))))) |
| 73 | 72 | oveq2d 6666 |
. . . . 5
⊢ (𝑛 = (𝑘 ∘𝑓 − 𝑗) → ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) = ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗)))))) |
| 74 | 3, 18, 20, 21, 2, 24, 68, 73 | psrass1lem 19377 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↦ (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗))))))))) = (𝑅 Σg (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↦ (𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛))))))))) |
| 75 | 7 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑋 ∈ 𝐵) |
| 76 | 8 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑌 ∈ 𝐵) |
| 77 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) |
| 78 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑘 → (𝑔 ∘𝑟 ≤ 𝑥 ↔ 𝑘 ∘𝑟 ≤ 𝑥)) |
| 79 | 78 | elrab 3363 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↔ (𝑘 ∈ 𝐷 ∧ 𝑘 ∘𝑟 ≤ 𝑥)) |
| 80 | 77, 79 | sylib 208 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → (𝑘 ∈ 𝐷 ∧ 𝑘 ∘𝑟 ≤ 𝑥)) |
| 81 | 80 | simpld 475 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑘 ∈ 𝐷) |
| 82 | 1, 4, 63, 5, 3, 75, 76, 81 | psrmulval 19386 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → ((𝑋 × 𝑌)‘𝑘) = (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘𝑓 − 𝑗)))))) |
| 83 | 82 | oveq1d 6665 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → (((𝑋 × 𝑌)‘𝑘)(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘))) = ((𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘𝑓 − 𝑗)))))(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘)))) |
| 84 | | eqid 2622 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 85 | | eqid 2622 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 86 | 6 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑅 ∈ Ring) |
| 87 | 19 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝐼 ∈ 𝑉) |
| 88 | 3 | psrbaglefi 19372 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑘 ∈ 𝐷) → {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ∈ Fin) |
| 89 | 87, 81, 88 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ∈ Fin) |
| 90 | 44 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑍:𝐷⟶(Base‘𝑅)) |
| 91 | | simplr 792 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑥 ∈ 𝐷) |
| 92 | 3 | psrbagf 19365 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑘 ∈ 𝐷) → 𝑘:𝐼⟶ℕ0) |
| 93 | 87, 81, 92 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑘:𝐼⟶ℕ0) |
| 94 | 80 | simprd 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑘 ∘𝑟 ≤ 𝑥) |
| 95 | 3 | psrbagcon 19371 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝐷 ∧ 𝑘:𝐼⟶ℕ0 ∧ 𝑘 ∘𝑟
≤ 𝑥)) → ((𝑥 ∘𝑓
− 𝑘) ∈ 𝐷 ∧ (𝑥 ∘𝑓 − 𝑘) ∘𝑟
≤ 𝑥)) |
| 96 | 87, 91, 93, 94, 95 | syl13anc 1328 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → ((𝑥 ∘𝑓 − 𝑘) ∈ 𝐷 ∧ (𝑥 ∘𝑓 − 𝑘) ∘𝑟
≤ 𝑥)) |
| 97 | 96 | simpld 475 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → (𝑥 ∘𝑓 − 𝑘) ∈ 𝐷) |
| 98 | 90, 97 | ffvelrnd 6360 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → (𝑍‘(𝑥 ∘𝑓 − 𝑘)) ∈ (Base‘𝑅)) |
| 99 | 86 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → 𝑅 ∈ Ring) |
| 100 | 27 | ad3antrrr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → 𝑋:𝐷⟶(Base‘𝑅)) |
| 101 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) |
| 102 | | breq1 4656 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑗 → (ℎ ∘𝑟 ≤ 𝑘 ↔ 𝑗 ∘𝑟 ≤ 𝑘)) |
| 103 | 102 | elrab 3363 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↔ (𝑗 ∈ 𝐷 ∧ 𝑗 ∘𝑟 ≤ 𝑘)) |
| 104 | 101, 103 | sylib 208 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → (𝑗 ∈ 𝐷 ∧ 𝑗 ∘𝑟 ≤ 𝑘)) |
| 105 | 104 | simpld 475 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → 𝑗 ∈ 𝐷) |
| 106 | 100, 105 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → (𝑋‘𝑗) ∈ (Base‘𝑅)) |
| 107 | 36 | ad3antrrr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → 𝑌:𝐷⟶(Base‘𝑅)) |
| 108 | 87 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → 𝐼 ∈ 𝑉) |
| 109 | 81 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → 𝑘 ∈ 𝐷) |
| 110 | 108, 105,
49 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → 𝑗:𝐼⟶ℕ0) |
| 111 | 104 | simprd 479 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → 𝑗 ∘𝑟 ≤ 𝑘) |
| 112 | 3 | psrbagcon 19371 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑘 ∈ 𝐷 ∧ 𝑗:𝐼⟶ℕ0 ∧ 𝑗 ∘𝑟
≤ 𝑘)) → ((𝑘 ∘𝑓
− 𝑗) ∈ 𝐷 ∧ (𝑘 ∘𝑓 − 𝑗) ∘𝑟
≤ 𝑘)) |
| 113 | 108, 109,
110, 111, 112 | syl13anc 1328 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → ((𝑘 ∘𝑓 − 𝑗) ∈ 𝐷 ∧ (𝑘 ∘𝑓 − 𝑗) ∘𝑟
≤ 𝑘)) |
| 114 | 113 | simpld 475 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑗) ∈ 𝐷) |
| 115 | 107, 114 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → (𝑌‘(𝑘 ∘𝑓 − 𝑗)) ∈ (Base‘𝑅)) |
| 116 | 2, 63 | ringcl 18561 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑗) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘 ∘𝑓 − 𝑗)) ∈ (Base‘𝑅)) → ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘𝑓 − 𝑗))) ∈ (Base‘𝑅)) |
| 117 | 99, 106, 115, 116 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘𝑓 − 𝑗))) ∈ (Base‘𝑅)) |
| 118 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘𝑓 − 𝑗)))) = (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘𝑓 − 𝑗)))) |
| 119 | | fvex 6201 |
. . . . . . . . . 10
⊢
(0g‘𝑅) ∈ V |
| 120 | 119 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) →
(0g‘𝑅)
∈ V) |
| 121 | 118, 89, 117, 120 | fsuppmptdm 8286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘𝑓 − 𝑗)))) finSupp
(0g‘𝑅)) |
| 122 | 2, 84, 85, 63, 86, 89, 98, 117, 121 | gsummulc1 18606 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ (((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘𝑓 − 𝑗)))(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘))))) = ((𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘𝑓 − 𝑗)))))(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘)))) |
| 123 | 98 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → (𝑍‘(𝑥 ∘𝑓 − 𝑘)) ∈ (Base‘𝑅)) |
| 124 | 2, 63 | ringass 18564 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ ((𝑋‘𝑗) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘 ∘𝑓 − 𝑗)) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑥 ∘𝑓 − 𝑘)) ∈ (Base‘𝑅))) → (((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘𝑓 − 𝑗)))(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘))) = ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘))))) |
| 125 | 99, 106, 115, 123, 124 | syl13anc 1328 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → (((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘𝑓 − 𝑗)))(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘))) = ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘))))) |
| 126 | 3 | psrbagf 19365 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐷) → 𝑥:𝐼⟶ℕ0) |
| 127 | 19, 126 | sylan 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥:𝐼⟶ℕ0) |
| 128 | 127 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → 𝑥:𝐼⟶ℕ0) |
| 129 | 128 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑥‘𝑧) ∈
ℕ0) |
| 130 | 93 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → 𝑘:𝐼⟶ℕ0) |
| 131 | 130 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑘‘𝑧) ∈
ℕ0) |
| 132 | 110 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑗‘𝑧) ∈
ℕ0) |
| 133 | | nn0cn 11302 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥‘𝑧) ∈ ℕ0 → (𝑥‘𝑧) ∈ ℂ) |
| 134 | | nn0cn 11302 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘‘𝑧) ∈ ℕ0 → (𝑘‘𝑧) ∈ ℂ) |
| 135 | | nn0cn 11302 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗‘𝑧) ∈ ℕ0 → (𝑗‘𝑧) ∈ ℂ) |
| 136 | | nnncan2 10318 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥‘𝑧) ∈ ℂ ∧ (𝑘‘𝑧) ∈ ℂ ∧ (𝑗‘𝑧) ∈ ℂ) → (((𝑥‘𝑧) − (𝑗‘𝑧)) − ((𝑘‘𝑧) − (𝑗‘𝑧))) = ((𝑥‘𝑧) − (𝑘‘𝑧))) |
| 137 | 133, 134,
135, 136 | syl3an 1368 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥‘𝑧) ∈ ℕ0 ∧ (𝑘‘𝑧) ∈ ℕ0 ∧ (𝑗‘𝑧) ∈ ℕ0) → (((𝑥‘𝑧) − (𝑗‘𝑧)) − ((𝑘‘𝑧) − (𝑗‘𝑧))) = ((𝑥‘𝑧) − (𝑘‘𝑧))) |
| 138 | 129, 131,
132, 137 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (((𝑥‘𝑧) − (𝑗‘𝑧)) − ((𝑘‘𝑧) − (𝑗‘𝑧))) = ((𝑥‘𝑧) − (𝑘‘𝑧))) |
| 139 | 138 | mpteq2dva 4744 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → (𝑧 ∈ 𝐼 ↦ (((𝑥‘𝑧) − (𝑗‘𝑧)) − ((𝑘‘𝑧) − (𝑗‘𝑧)))) = (𝑧 ∈ 𝐼 ↦ ((𝑥‘𝑧) − (𝑘‘𝑧)))) |
| 140 | | ovexd 6680 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → ((𝑥‘𝑧) − (𝑗‘𝑧)) ∈ V) |
| 141 | | ovexd 6680 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → ((𝑘‘𝑧) − (𝑗‘𝑧)) ∈ V) |
| 142 | 128 | feqmptd 6249 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → 𝑥 = (𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧))) |
| 143 | 110 | feqmptd 6249 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → 𝑗 = (𝑧 ∈ 𝐼 ↦ (𝑗‘𝑧))) |
| 144 | 108, 129,
132, 142, 143 | offval2 6914 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → (𝑥 ∘𝑓 − 𝑗) = (𝑧 ∈ 𝐼 ↦ ((𝑥‘𝑧) − (𝑗‘𝑧)))) |
| 145 | 130 | feqmptd 6249 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → 𝑘 = (𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧))) |
| 146 | 108, 131,
132, 145, 143 | offval2 6914 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑗) = (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑗‘𝑧)))) |
| 147 | 108, 140,
141, 144, 146 | offval2 6914 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → ((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗)) = (𝑧 ∈ 𝐼 ↦ (((𝑥‘𝑧) − (𝑗‘𝑧)) − ((𝑘‘𝑧) − (𝑗‘𝑧))))) |
| 148 | 108, 129,
131, 142, 145 | offval2 6914 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → (𝑥 ∘𝑓 − 𝑘) = (𝑧 ∈ 𝐼 ↦ ((𝑥‘𝑧) − (𝑘‘𝑧)))) |
| 149 | 139, 147,
148 | 3eqtr4d 2666 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → ((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗)) = (𝑥 ∘𝑓 − 𝑘)) |
| 150 | 149 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → (𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗))) = (𝑍‘(𝑥 ∘𝑓 − 𝑘))) |
| 151 | 150 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → ((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗)))) = ((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘)))) |
| 152 | 151 | oveq2d 6666 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗))))) = ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘))))) |
| 153 | 125, 152 | eqtr4d 2659 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘}) → (((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘𝑓 − 𝑗)))(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘))) = ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗)))))) |
| 154 | 153 | mpteq2dva 4744 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ (((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘𝑓 − 𝑗)))(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘)))) = (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗))))))) |
| 155 | 154 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ (((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘𝑓 − 𝑗)))(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘))))) = (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗)))))))) |
| 156 | 83, 122, 155 | 3eqtr2d 2662 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → (((𝑋 × 𝑌)‘𝑘)(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘))) = (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗)))))))) |
| 157 | 156 | mpteq2dva 4744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘)))) = (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↦ (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗))))))))) |
| 158 | 157 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘))))) = (𝑅 Σg (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↦ (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘𝑓 − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− (𝑘
∘𝑓 − 𝑗)))))))))) |
| 159 | 8 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑌 ∈ 𝐵) |
| 160 | 10 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → 𝑍 ∈ 𝐵) |
| 161 | 1, 4, 63, 5, 3, 159, 160, 54 | psrmulval 19386 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → ((𝑌 × 𝑍)‘(𝑥 ∘𝑓 − 𝑗)) = (𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))))) |
| 162 | 161 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → ((𝑋‘𝑗)(.r‘𝑅)((𝑌 × 𝑍)‘(𝑥 ∘𝑓 − 𝑗))) = ((𝑋‘𝑗)(.r‘𝑅)(𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛))))))) |
| 163 | 3 | psrbaglefi 19372 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∘𝑓 − 𝑗) ∈ 𝐷) → {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ∈
Fin) |
| 164 | 46, 54, 163 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ∈
Fin) |
| 165 | | ovex 6678 |
. . . . . . . . . . . . 13
⊢
(ℕ0 ↑𝑚 𝐼) ∈ V |
| 166 | 3, 165 | rab2ex 4816 |
. . . . . . . . . . . 12
⊢ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ∈
V |
| 167 | 166 | mptex 6486 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) ∈
V |
| 168 | | funmpt 5926 |
. . . . . . . . . . 11
⊢ Fun
(𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) |
| 169 | 167, 168,
119 | 3pm3.2i 1239 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) ∈ V
∧ Fun (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) ∧
(0g‘𝑅)
∈ V) |
| 170 | 169 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → ((𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) ∈ V
∧ Fun (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) ∧
(0g‘𝑅)
∈ V)) |
| 171 | | suppssdm 7308 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) supp
(0g‘𝑅))
⊆ dom (𝑛 ∈
{ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) |
| 172 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) = (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) |
| 173 | 172 | dmmptss 5631 |
. . . . . . . . . . 11
⊢ dom
(𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) ⊆
{ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} |
| 174 | 171, 173 | sstri 3612 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) supp
(0g‘𝑅))
⊆ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} |
| 175 | 174 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → ((𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) supp
(0g‘𝑅))
⊆ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)}) |
| 176 | | suppssfifsupp 8290 |
. . . . . . . . 9
⊢ ((((𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) ∈ V
∧ Fun (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) ∧
(0g‘𝑅)
∈ V) ∧ ({ℎ ∈
𝐷 ∣ ℎ ∘𝑟 ≤
(𝑥
∘𝑓 − 𝑗)} ∈ Fin ∧ ((𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) supp
(0g‘𝑅))
⊆ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)})) → (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) finSupp
(0g‘𝑅)) |
| 177 | 170, 164,
175, 176 | syl12anc 1324 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))) finSupp
(0g‘𝑅)) |
| 178 | 2, 84, 85, 63, 25, 164, 34, 65, 177 | gsummulc2 18607 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → (𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))))) = ((𝑋‘𝑗)(.r‘𝑅)(𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛))))))) |
| 179 | 162, 178 | eqtr4d 2659 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥}) → ((𝑋‘𝑗)(.r‘𝑅)((𝑌 × 𝑍)‘(𝑥 ∘𝑓 − 𝑗))) = (𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛))))))) |
| 180 | 179 | mpteq2dva 4744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌 × 𝑍)‘(𝑥 ∘𝑓 − 𝑗)))) = (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↦ (𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛)))))))) |
| 181 | 180 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑅 Σg (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌 × 𝑍)‘(𝑥 ∘𝑓 − 𝑗))))) = (𝑅 Σg (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↦ (𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘𝑟 ≤ (𝑥 ∘𝑓
− 𝑗)} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘𝑓 − 𝑗) ∘𝑓
− 𝑛))))))))) |
| 182 | 74, 158, 181 | 3eqtr4d 2666 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌 × 𝑍)‘(𝑥 ∘𝑓 − 𝑗)))))) |
| 183 | 9 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑋 × 𝑌) ∈ 𝐵) |
| 184 | 10 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑍 ∈ 𝐵) |
| 185 | 1, 4, 63, 5, 3, 183, 184, 21 | psrmulval 19386 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (((𝑋 × 𝑌) × 𝑍)‘𝑥) = (𝑅 Σg (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r‘𝑅)(𝑍‘(𝑥 ∘𝑓 − 𝑘)))))) |
| 186 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑋 ∈ 𝐵) |
| 187 | 14 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑌 × 𝑍) ∈ 𝐵) |
| 188 | 1, 4, 63, 5, 3, 186, 187, 21 | psrmulval 19386 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑋 × (𝑌 × 𝑍))‘𝑥) = (𝑅 Σg (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘𝑟 ≤ 𝑥} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌 × 𝑍)‘(𝑥 ∘𝑓 − 𝑗)))))) |
| 189 | 182, 185,
188 | 3eqtr4d 2666 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (((𝑋 × 𝑌) × 𝑍)‘𝑥) = ((𝑋 × (𝑌 × 𝑍))‘𝑥)) |
| 190 | 13, 17, 189 | eqfnfvd 6314 |
1
⊢ (𝜑 → ((𝑋 × 𝑌) × 𝑍) = (𝑋 × (𝑌 × 𝑍))) |