MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdivtx Structured version   Visualization version   Unicode version

Theorem pthdivtx 26625
Description: The inner vertices of a path are distinct from all other vertices. (Contributed by AV, 5-Feb-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
pthdivtx  |-  ( ( F (Paths `  G
) P  /\  (
I  e.  ( 1..^ ( # `  F
) )  /\  J  e.  ( 0 ... ( # `
 F ) )  /\  I  =/=  J
) )  ->  ( P `  I )  =/=  ( P `  J
) )

Proof of Theorem pthdivtx
StepHypRef Expression
1 ispth 26619 . . 3  |-  ( F (Paths `  G ) P 
<->  ( F (Trails `  G ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) )
2 trliswlk 26594 . . . . 5  |-  ( F (Trails `  G ) P  ->  F (Walks `  G ) P )
3 eqid 2622 . . . . . 6  |-  (Vtx `  G )  =  (Vtx
`  G )
43wlkp 26512 . . . . 5  |-  ( F (Walks `  G ) P  ->  P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G ) )
5 elfz0lmr 12583 . . . . . . . . 9  |-  ( J  e.  ( 0 ... ( # `  F
) )  ->  ( J  =  0  \/  J  e.  ( 1..^ ( # `  F
) )  \/  J  =  ( # `  F
) ) )
6 elfzo1 12517 . . . . . . . . . . . . . . . . . . . . 21  |-  ( I  e.  ( 1..^ (
# `  F )
)  <->  ( I  e.  NN  /\  ( # `  F )  e.  NN  /\  I  <  ( # `  F ) ) )
7 nnnn0 11299 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
# `  F )  e.  NN  ->  ( # `  F
)  e.  NN0 )
873ad2ant2 1083 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( I  e.  NN  /\  ( # `  F )  e.  NN  /\  I  <  ( # `  F
) )  ->  ( # `
 F )  e. 
NN0 )
96, 8sylbi 207 . . . . . . . . . . . . . . . . . . . 20  |-  ( I  e.  ( 1..^ (
# `  F )
)  ->  ( # `  F
)  e.  NN0 )
109adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) )  -> 
( # `  F )  e.  NN0 )
11 fvinim0ffz 12587 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( # `
 F )  e. 
NN0 )  ->  (
( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) 
<->  ( ( P ` 
0 )  e/  ( P " ( 1..^ (
# `  F )
) )  /\  ( P `  ( # `  F
) )  e/  ( P " ( 1..^ (
# `  F )
) ) ) ) )
1210, 11sylan2 491 . . . . . . . . . . . . . . . . . 18  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( ( P " { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/)  <->  ( ( P `
 0 )  e/  ( P " ( 1..^ ( # `  F
) ) )  /\  ( P `  ( # `  F ) )  e/  ( P " ( 1..^ ( # `  F
) ) ) ) ) )
13 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( J  =  0  ->  ( P `  J )  =  ( P ` 
0 ) )
1413eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( J  =  0  ->  (
( P `  I
)  =  ( P `
 J )  <->  ( P `  I )  =  ( P `  0 ) ) )
1514ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( P `
 I )  =  ( P `  J
)  <->  ( P `  I )  =  ( P `  0 ) ) )
16 ffun 6048 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  Fun  P )
1716adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  I  e.  ( 1..^ ( # `  F ) ) )  ->  Fun  P )
18 fdm 6051 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  dom  P  =  ( 0 ... ( # `  F
) ) )
19 fzo0ss1 12498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( 1..^ ( # `  F
) )  C_  (
0..^ ( # `  F
) )
20 fzossfz 12488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( 0..^ ( # `  F
) )  C_  (
0 ... ( # `  F
) )
2119, 20sstri 3612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( 1..^ ( # `  F
) )  C_  (
0 ... ( # `  F
) )
2221sseli 3599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( I  e.  ( 1..^ (
# `  F )
)  ->  I  e.  ( 0 ... ( # `
 F ) ) )
23 eleq2 2690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( dom 
P  =  ( 0 ... ( # `  F
) )  ->  (
I  e.  dom  P  <->  I  e.  ( 0 ... ( # `  F
) ) ) )
2422, 23syl5ibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( dom 
P  =  ( 0 ... ( # `  F
) )  ->  (
I  e.  ( 1..^ ( # `  F
) )  ->  I  e.  dom  P ) )
2518, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
I  e.  ( 1..^ ( # `  F
) )  ->  I  e.  dom  P ) )
2625imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  I  e.  ( 1..^ ( # `  F ) ) )  ->  I  e.  dom  P )
2717, 26jca 554 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  I  e.  ( 1..^ ( # `  F ) ) )  ->  ( Fun  P  /\  I  e.  dom  P ) )
2827adantrl 752 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( Fun  P  /\  I  e.  dom  P ) )
29 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  I  e.  ( 1..^ ( # `  F
) ) )
30 funfvima 6492 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( Fun  P  /\  I  e.  dom  P )  -> 
( I  e.  ( 1..^ ( # `  F
) )  ->  ( P `  I )  e.  ( P " (
1..^ ( # `  F
) ) ) ) )
3128, 29, 30sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( P `  I )  e.  ( P " ( 1..^ ( # `  F
) ) ) )
32 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P `  I )  =  ( P ` 
0 )  ->  (
( P `  I
)  e.  ( P
" ( 1..^ (
# `  F )
) )  <->  ( P `  0 )  e.  ( P " (
1..^ ( # `  F
) ) ) ) )
3331, 32syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( P `
 I )  =  ( P `  0
)  ->  ( P `  0 )  e.  ( P " (
1..^ ( # `  F
) ) ) ) )
3415, 33sylbid 230 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( P `
 I )  =  ( P `  J
)  ->  ( P `  0 )  e.  ( P " (
1..^ ( # `  F
) ) ) ) )
35 nnel 2906 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  ( P `  0
)  e/  ( P " ( 1..^ ( # `  F ) ) )  <-> 
( P `  0
)  e.  ( P
" ( 1..^ (
# `  F )
) ) )
3634, 35syl6ibr 242 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( P `
 I )  =  ( P `  J
)  ->  -.  ( P `  0 )  e/  ( P " (
1..^ ( # `  F
) ) ) ) )
3736necon2ad 2809 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( P `
 0 )  e/  ( P " ( 1..^ ( # `  F
) ) )  -> 
( P `  I
)  =/=  ( P `
 J ) ) )
3837adantrd 484 . . . . . . . . . . . . . . . . . 18  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( ( P `  0 )  e/  ( P "
( 1..^ ( # `  F ) ) )  /\  ( P `  ( # `  F ) )  e/  ( P
" ( 1..^ (
# `  F )
) ) )  -> 
( P `  I
)  =/=  ( P `
 J ) ) )
3912, 38sylbid 230 . . . . . . . . . . . . . . . . 17  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( ( P " { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/)  ->  ( P `
 I )  =/=  ( P `  J
) ) )
4039ex 450 . . . . . . . . . . . . . . . 16  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) )  -> 
( ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/)  ->  ( P `
 I )  =/=  ( P `  J
) ) ) )
4140com23 86 . . . . . . . . . . . . . . 15  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/)  ->  ( ( J  =  0  /\  I  e.  ( 1..^ ( # `  F ) ) )  ->  ( P `  I )  =/=  ( P `  J )
) ) )
4241a1d 25 . . . . . . . . . . . . . 14  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  ( Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  -> 
( ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/)  ->  ( ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) )  -> 
( P `  I
)  =/=  ( P `
 J ) ) ) ) )
43423imp 1256 . . . . . . . . . . . . 13  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  ->  ( ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) )  -> 
( P `  I
)  =/=  ( P `
 J ) ) )
4443com12 32 . . . . . . . . . . . 12  |-  ( ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) )  -> 
( ( P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F ) ) )  /\  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) )  ->  ( P `  I )  =/=  ( P `  J
) ) )
4544a1d 25 . . . . . . . . . . 11  |-  ( ( J  =  0  /\  I  e.  ( 1..^ ( # `  F
) ) )  -> 
( I  =/=  J  ->  ( ( P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F ) ) )  /\  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) )  ->  ( P `  I )  =/=  ( P `  J
) ) ) )
4645ex 450 . . . . . . . . . 10  |-  ( J  =  0  ->  (
I  e.  ( 1..^ ( # `  F
) )  ->  (
I  =/=  J  -> 
( ( P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F ) ) )  /\  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) )  ->  ( P `  I )  =/=  ( P `  J
) ) ) ) )
47 fvres 6207 . . . . . . . . . . . . . . . . . . . 20  |-  ( I  e.  ( 1..^ (
# `  F )
)  ->  ( ( P  |`  ( 1..^ (
# `  F )
) ) `  I
)  =  ( P `
 I ) )
4847adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  e.  ( 1..^ ( # `  F
) )  /\  I  e.  ( 1..^ ( # `  F ) ) )  ->  ( ( P  |`  ( 1..^ ( # `  F ) ) ) `
 I )  =  ( P `  I
) )
4948adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  /\  ( J  e.  ( 1..^ ( # `  F
) )  /\  I  e.  ( 1..^ ( # `  F ) ) ) )  ->  ( ( P  |`  ( 1..^ (
# `  F )
) ) `  I
)  =  ( P `
 I ) )
5049eqcomd 2628 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  /\  ( J  e.  ( 1..^ ( # `  F
) )  /\  I  e.  ( 1..^ ( # `  F ) ) ) )  ->  ( P `  I )  =  ( ( P  |`  (
1..^ ( # `  F
) ) ) `  I ) )
51 fvres 6207 . . . . . . . . . . . . . . . . . . 19  |-  ( J  e.  ( 1..^ (
# `  F )
)  ->  ( ( P  |`  ( 1..^ (
# `  F )
) ) `  J
)  =  ( P `
 J ) )
5251ad2antrl 764 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  /\  ( J  e.  ( 1..^ ( # `  F
) )  /\  I  e.  ( 1..^ ( # `  F ) ) ) )  ->  ( ( P  |`  ( 1..^ (
# `  F )
) ) `  J
)  =  ( P `
 J ) )
5352eqcomd 2628 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  /\  ( J  e.  ( 1..^ ( # `  F
) )  /\  I  e.  ( 1..^ ( # `  F ) ) ) )  ->  ( P `  J )  =  ( ( P  |`  (
1..^ ( # `  F
) ) ) `  J ) )
5450, 53eqeq12d 2637 . . . . . . . . . . . . . . . 16  |-  ( ( ( P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  /\  ( J  e.  ( 1..^ ( # `  F
) )  /\  I  e.  ( 1..^ ( # `  F ) ) ) )  ->  ( ( P `  I )  =  ( P `  J )  <->  ( ( P  |`  ( 1..^ (
# `  F )
) ) `  I
)  =  ( ( P  |`  ( 1..^ ( # `  F
) ) ) `  J ) ) )
55 fssres 6070 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  (
1..^ ( # `  F
) )  C_  (
0 ... ( # `  F
) ) )  -> 
( P  |`  (
1..^ ( # `  F
) ) ) : ( 1..^ ( # `  F ) ) --> (Vtx
`  G ) )
5621, 55mpan2 707 . . . . . . . . . . . . . . . . . . 19  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  ( P  |`  ( 1..^ (
# `  F )
) ) : ( 1..^ ( # `  F
) ) --> (Vtx `  G ) )
57 df-f1 5893 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P  |`  ( 1..^ ( # `  F
) ) ) : ( 1..^ ( # `  F ) ) -1-1-> (Vtx
`  G )  <->  ( ( P  |`  ( 1..^ (
# `  F )
) ) : ( 1..^ ( # `  F
) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) ) ) )
5857biimpri 218 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  |`  (
1..^ ( # `  F
) ) ) : ( 1..^ ( # `  F ) ) --> (Vtx
`  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) )  ->  ( P  |`  ( 1..^ ( # `  F
) ) ) : ( 1..^ ( # `  F ) ) -1-1-> (Vtx
`  G ) )
5956, 58sylan 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) ) )  ->  ( P  |`  ( 1..^ ( # `  F
) ) ) : ( 1..^ ( # `  F ) ) -1-1-> (Vtx
`  G ) )
60593adant3 1081 . . . . . . . . . . . . . . . . 17  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  ->  ( P  |`  ( 1..^ ( # `  F ) ) ) : ( 1..^ (
# `  F )
) -1-1-> (Vtx `  G )
)
61 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  /\  ( J  e.  ( 1..^ ( # `  F
) )  /\  I  e.  ( 1..^ ( # `  F ) ) ) )  ->  ( J  e.  ( 1..^ ( # `  F ) )  /\  I  e.  ( 1..^ ( # `  F
) ) ) )
6261ancomd 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  /\  ( J  e.  ( 1..^ ( # `  F
) )  /\  I  e.  ( 1..^ ( # `  F ) ) ) )  ->  ( I  e.  ( 1..^ ( # `  F ) )  /\  J  e.  ( 1..^ ( # `  F
) ) ) )
63 f1veqaeq 6514 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  |`  (
1..^ ( # `  F
) ) ) : ( 1..^ ( # `  F ) ) -1-1-> (Vtx
`  G )  /\  ( I  e.  (
1..^ ( # `  F
) )  /\  J  e.  ( 1..^ ( # `  F ) ) ) )  ->  ( (
( P  |`  (
1..^ ( # `  F
) ) ) `  I )  =  ( ( P  |`  (
1..^ ( # `  F
) ) ) `  J )  ->  I  =  J ) )
6460, 62, 63syl2an2r 876 . . . . . . . . . . . . . . . 16  |-  ( ( ( P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  /\  ( J  e.  ( 1..^ ( # `  F
) )  /\  I  e.  ( 1..^ ( # `  F ) ) ) )  ->  ( (
( P  |`  (
1..^ ( # `  F
) ) ) `  I )  =  ( ( P  |`  (
1..^ ( # `  F
) ) ) `  J )  ->  I  =  J ) )
6554, 64sylbid 230 . . . . . . . . . . . . . . 15  |-  ( ( ( P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  /\  ( J  e.  ( 1..^ ( # `  F
) )  /\  I  e.  ( 1..^ ( # `  F ) ) ) )  ->  ( ( P `  I )  =  ( P `  J )  ->  I  =  J ) )
6665ancoms 469 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  ( 1..^ ( # `  F
) )  /\  I  e.  ( 1..^ ( # `  F ) ) )  /\  ( P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F ) ) )  /\  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) ) )  -> 
( ( P `  I )  =  ( P `  J )  ->  I  =  J ) )
6766necon3d 2815 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  ( 1..^ ( # `  F
) )  /\  I  e.  ( 1..^ ( # `  F ) ) )  /\  ( P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F ) ) )  /\  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) ) )  -> 
( I  =/=  J  ->  ( P `  I
)  =/=  ( P `
 J ) ) )
6867ex 450 . . . . . . . . . . . 12  |-  ( ( J  e.  ( 1..^ ( # `  F
) )  /\  I  e.  ( 1..^ ( # `  F ) ) )  ->  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  ->  ( I  =/=  J  ->  ( P `  I )  =/=  ( P `  J
) ) ) )
6968com23 86 . . . . . . . . . . 11  |-  ( ( J  e.  ( 1..^ ( # `  F
) )  /\  I  e.  ( 1..^ ( # `  F ) ) )  ->  ( I  =/= 
J  ->  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  ->  ( P `
 I )  =/=  ( P `  J
) ) ) )
7069ex 450 . . . . . . . . . 10  |-  ( J  e.  ( 1..^ (
# `  F )
)  ->  ( I  e.  ( 1..^ ( # `  F ) )  -> 
( I  =/=  J  ->  ( ( P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F ) ) )  /\  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) )  ->  ( P `  I )  =/=  ( P `  J
) ) ) ) )
719adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  =  ( # `  F )  /\  I  e.  ( 1..^ ( # `  F ) ) )  ->  ( # `  F
)  e.  NN0 )
7271, 11sylan2 491 . . . . . . . . . . . . . . . . . 18  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  ( # `  F
)  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( ( P " { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/)  <->  ( ( P `
 0 )  e/  ( P " ( 1..^ ( # `  F
) ) )  /\  ( P `  ( # `  F ) )  e/  ( P " ( 1..^ ( # `  F
) ) ) ) ) )
73 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( J  =  ( # `  F
)  ->  ( P `  J )  =  ( P `  ( # `  F ) ) )
7473eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( J  =  ( # `  F
)  ->  ( ( P `  I )  =  ( P `  J )  <->  ( P `  I )  =  ( P `  ( # `  F ) ) ) )
7574ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  ( # `  F
)  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( P `
 I )  =  ( P `  J
)  <->  ( P `  I )  =  ( P `  ( # `  F ) ) ) )
7627adantrl 752 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  ( # `  F
)  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( Fun  P  /\  I  e.  dom  P ) )
77 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  ( # `  F
)  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  I  e.  ( 1..^ ( # `  F
) ) )
7876, 77, 30sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  ( # `  F
)  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( P `  I )  e.  ( P " ( 1..^ ( # `  F
) ) ) )
79 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P `  I )  =  ( P `  ( # `  F ) )  ->  ( ( P `  I )  e.  ( P " (
1..^ ( # `  F
) ) )  <->  ( P `  ( # `  F
) )  e.  ( P " ( 1..^ ( # `  F
) ) ) ) )
8078, 79syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  ( # `  F
)  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( P `
 I )  =  ( P `  ( # `
 F ) )  ->  ( P `  ( # `  F ) )  e.  ( P
" ( 1..^ (
# `  F )
) ) ) )
8175, 80sylbid 230 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  ( # `  F
)  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( P `
 I )  =  ( P `  J
)  ->  ( P `  ( # `  F
) )  e.  ( P " ( 1..^ ( # `  F
) ) ) ) )
82 nnel 2906 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  ( P `  ( # `
 F ) )  e/  ( P "
( 1..^ ( # `  F ) ) )  <-> 
( P `  ( # `
 F ) )  e.  ( P "
( 1..^ ( # `  F ) ) ) )
8381, 82syl6ibr 242 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  ( # `  F
)  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( P `
 I )  =  ( P `  J
)  ->  -.  ( P `  ( # `  F
) )  e/  ( P " ( 1..^ (
# `  F )
) ) ) )
8483necon2ad 2809 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  ( # `  F
)  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( P `
 ( # `  F
) )  e/  ( P " ( 1..^ (
# `  F )
) )  ->  ( P `  I )  =/=  ( P `  J
) ) )
8584adantld 483 . . . . . . . . . . . . . . . . . 18  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  ( # `  F
)  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( ( P `  0 )  e/  ( P "
( 1..^ ( # `  F ) ) )  /\  ( P `  ( # `  F ) )  e/  ( P
" ( 1..^ (
# `  F )
) ) )  -> 
( P `  I
)  =/=  ( P `
 J ) ) )
8672, 85sylbid 230 . . . . . . . . . . . . . . . . 17  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  ( J  =  ( # `  F
)  /\  I  e.  ( 1..^ ( # `  F
) ) ) )  ->  ( ( ( P " { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/)  ->  ( P `
 I )  =/=  ( P `  J
) ) )
8786ex 450 . . . . . . . . . . . . . . . 16  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
( J  =  (
# `  F )  /\  I  e.  (
1..^ ( # `  F
) ) )  -> 
( ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/)  ->  ( P `
 I )  =/=  ( P `  J
) ) ) )
8887com23 86 . . . . . . . . . . . . . . 15  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/)  ->  ( ( J  =  ( # `  F
)  /\  I  e.  ( 1..^ ( # `  F
) ) )  -> 
( P `  I
)  =/=  ( P `
 J ) ) ) )
8988a1d 25 . . . . . . . . . . . . . 14  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  ( Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  -> 
( ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/)  ->  ( ( J  =  ( # `  F )  /\  I  e.  ( 1..^ ( # `  F ) ) )  ->  ( P `  I )  =/=  ( P `  J )
) ) ) )
90893imp 1256 . . . . . . . . . . . . 13  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  ->  ( ( J  =  ( # `  F )  /\  I  e.  ( 1..^ ( # `  F ) ) )  ->  ( P `  I )  =/=  ( P `  J )
) )
9190com12 32 . . . . . . . . . . . 12  |-  ( ( J  =  ( # `  F )  /\  I  e.  ( 1..^ ( # `  F ) ) )  ->  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  ->  ( P `
 I )  =/=  ( P `  J
) ) )
9291a1d 25 . . . . . . . . . . 11  |-  ( ( J  =  ( # `  F )  /\  I  e.  ( 1..^ ( # `  F ) ) )  ->  ( I  =/= 
J  ->  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  ->  ( P `
 I )  =/=  ( P `  J
) ) ) )
9392ex 450 . . . . . . . . . 10  |-  ( J  =  ( # `  F
)  ->  ( I  e.  ( 1..^ ( # `  F ) )  -> 
( I  =/=  J  ->  ( ( P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F ) ) )  /\  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) )  ->  ( P `  I )  =/=  ( P `  J
) ) ) ) )
9446, 70, 933jaoi 1391 . . . . . . . . 9  |-  ( ( J  =  0  \/  J  e.  ( 1..^ ( # `  F
) )  \/  J  =  ( # `  F
) )  ->  (
I  e.  ( 1..^ ( # `  F
) )  ->  (
I  =/=  J  -> 
( ( P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F ) ) )  /\  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) )  ->  ( P `  I )  =/=  ( P `  J
) ) ) ) )
955, 94syl 17 . . . . . . . 8  |-  ( J  e.  ( 0 ... ( # `  F
) )  ->  (
I  e.  ( 1..^ ( # `  F
) )  ->  (
I  =/=  J  -> 
( ( P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F ) ) )  /\  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) )  ->  ( P `  I )  =/=  ( P `  J
) ) ) ) )
96953imp21 1277 . . . . . . 7  |-  ( ( I  e.  ( 1..^ ( # `  F
) )  /\  J  e.  ( 0 ... ( # `
 F ) )  /\  I  =/=  J
)  ->  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  ->  ( P `
 I )  =/=  ( P `  J
) ) )
9796com12 32 . . . . . 6  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  ->  ( ( I  e.  ( 1..^ ( # `  F
) )  /\  J  e.  ( 0 ... ( # `
 F ) )  /\  I  =/=  J
)  ->  ( P `  I )  =/=  ( P `  J )
) )
98973exp 1264 . . . . 5  |-  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  ( Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  -> 
( ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/)  ->  ( ( I  e.  ( 1..^ ( # `  F
) )  /\  J  e.  ( 0 ... ( # `
 F ) )  /\  I  =/=  J
)  ->  ( P `  I )  =/=  ( P `  J )
) ) ) )
992, 4, 983syl 18 . . . 4  |-  ( F (Trails `  G ) P  ->  ( Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  -> 
( ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/)  ->  ( ( I  e.  ( 1..^ ( # `  F
) )  /\  J  e.  ( 0 ... ( # `
 F ) )  /\  I  =/=  J
)  ->  ( P `  I )  =/=  ( P `  J )
) ) ) )
100993imp 1256 . . 3  |-  ( ( F (Trails `  G
) P  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  ->  ( ( I  e.  ( 1..^ ( # `  F
) )  /\  J  e.  ( 0 ... ( # `
 F ) )  /\  I  =/=  J
)  ->  ( P `  I )  =/=  ( P `  J )
) )
1011, 100sylbi 207 . 2  |-  ( F (Paths `  G ) P  ->  ( ( I  e.  ( 1..^ (
# `  F )
)  /\  J  e.  ( 0 ... ( # `
 F ) )  /\  I  =/=  J
)  ->  ( P `  I )  =/=  ( P `  J )
) )
102101imp 445 1  |-  ( ( F (Paths `  G
) P  /\  (
I  e.  ( 1..^ ( # `  F
) )  /\  J  e.  ( 0 ... ( # `
 F ) )  /\  I  =/=  J
) )  ->  ( P `  I )  =/=  ( P `  J
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897    i^i cin 3573    C_ wss 3574   (/)c0 3915   {cpr 4179   class class class wbr 4653   `'ccnv 5113   dom cdm 5114    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    < clt 10074   NNcn 11020   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Vtxcvtx 25874  Walkscwlks 26492  Trailsctrls 26587  Pathscpths 26608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-trls 26589  df-pths 26612
This theorem is referenced by:  pthdadjvtx  26626  upgr4cycl4dv4e  27045
  Copyright terms: Public domain W3C validator