| Step | Hyp | Ref
| Expression |
| 1 | | pwsco2mhm.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝑅 MndHom 𝑆)) |
| 2 | | mhmrcl1 17338 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 4 | | pwsco2mhm.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 5 | | pwsco2mhm.y |
. . . . 5
⊢ 𝑌 = (𝑅 ↑s 𝐴) |
| 6 | 5 | pwsmnd 17325 |
. . . 4
⊢ ((𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝑌 ∈ Mnd) |
| 7 | 3, 4, 6 | syl2anc 693 |
. . 3
⊢ (𝜑 → 𝑌 ∈ Mnd) |
| 8 | | mhmrcl2 17339 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑆 ∈ Mnd) |
| 9 | 1, 8 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ Mnd) |
| 10 | | pwsco2mhm.z |
. . . . 5
⊢ 𝑍 = (𝑆 ↑s 𝐴) |
| 11 | 10 | pwsmnd 17325 |
. . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝑍 ∈ Mnd) |
| 12 | 9, 4, 11 | syl2anc 693 |
. . 3
⊢ (𝜑 → 𝑍 ∈ Mnd) |
| 13 | 7, 12 | jca 554 |
. 2
⊢ (𝜑 → (𝑌 ∈ Mnd ∧ 𝑍 ∈ Mnd)) |
| 14 | | eqid 2622 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 15 | | eqid 2622 |
. . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 16 | 14, 15 | mhmf 17340 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
| 17 | 1, 16 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
| 18 | 17 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
| 19 | | pwsco2mhm.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑌) |
| 20 | 3 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝑅 ∈ Mnd) |
| 21 | 4 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝐴 ∈ 𝑉) |
| 22 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ 𝐵) |
| 23 | 5, 14, 19, 20, 21, 22 | pwselbas 16149 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝑔:𝐴⟶(Base‘𝑅)) |
| 24 | | fco 6058 |
. . . . . 6
⊢ ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑔:𝐴⟶(Base‘𝑅)) → (𝐹 ∘ 𝑔):𝐴⟶(Base‘𝑆)) |
| 25 | 18, 23, 24 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (𝐹 ∘ 𝑔):𝐴⟶(Base‘𝑆)) |
| 26 | 9 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝑆 ∈ Mnd) |
| 27 | | eqid 2622 |
. . . . . . 7
⊢
(Base‘𝑍) =
(Base‘𝑍) |
| 28 | 10, 15, 27 | pwselbasb 16148 |
. . . . . 6
⊢ ((𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → ((𝐹 ∘ 𝑔) ∈ (Base‘𝑍) ↔ (𝐹 ∘ 𝑔):𝐴⟶(Base‘𝑆))) |
| 29 | 26, 21, 28 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → ((𝐹 ∘ 𝑔) ∈ (Base‘𝑍) ↔ (𝐹 ∘ 𝑔):𝐴⟶(Base‘𝑆))) |
| 30 | 25, 29 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (𝐹 ∘ 𝑔) ∈ (Base‘𝑍)) |
| 31 | | eqid 2622 |
. . . 4
⊢ (𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)) = (𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)) |
| 32 | 30, 31 | fmptd 6385 |
. . 3
⊢ (𝜑 → (𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)):𝐵⟶(Base‘𝑍)) |
| 33 | 1 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐹 ∈ (𝑅 MndHom 𝑆)) |
| 34 | 33 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → 𝐹 ∈ (𝑅 MndHom 𝑆)) |
| 35 | 33, 2 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ Mnd) |
| 36 | 4 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐴 ∈ 𝑉) |
| 37 | | simprl 794 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 38 | 5, 14, 19, 35, 36, 37 | pwselbas 16149 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥:𝐴⟶(Base‘𝑅)) |
| 39 | 38 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) ∈ (Base‘𝑅)) |
| 40 | | simprr 796 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 41 | 5, 14, 19, 35, 36, 40 | pwselbas 16149 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦:𝐴⟶(Base‘𝑅)) |
| 42 | 41 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → (𝑦‘𝑤) ∈ (Base‘𝑅)) |
| 43 | | eqid 2622 |
. . . . . . . . . 10
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 44 | | eqid 2622 |
. . . . . . . . . 10
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 45 | 14, 43, 44 | mhmlin 17342 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (𝑥‘𝑤) ∈ (Base‘𝑅) ∧ (𝑦‘𝑤) ∈ (Base‘𝑅)) → (𝐹‘((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤))) = ((𝐹‘(𝑥‘𝑤))(+g‘𝑆)(𝐹‘(𝑦‘𝑤)))) |
| 46 | 34, 39, 42, 45 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → (𝐹‘((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤))) = ((𝐹‘(𝑥‘𝑤))(+g‘𝑆)(𝐹‘(𝑦‘𝑤)))) |
| 47 | 46 | mpteq2dva 4744 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑤 ∈ 𝐴 ↦ (𝐹‘((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)))) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘(𝑥‘𝑤))(+g‘𝑆)(𝐹‘(𝑦‘𝑤))))) |
| 48 | | fvexd 6203 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → (𝐹‘(𝑥‘𝑤)) ∈ V) |
| 49 | | fvexd 6203 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → (𝐹‘(𝑦‘𝑤)) ∈ V) |
| 50 | 38 | feqmptd 6249 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = (𝑤 ∈ 𝐴 ↦ (𝑥‘𝑤))) |
| 51 | 33, 16 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
| 52 | 51 | feqmptd 6249 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐹 = (𝑧 ∈ (Base‘𝑅) ↦ (𝐹‘𝑧))) |
| 53 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑧 = (𝑥‘𝑤) → (𝐹‘𝑧) = (𝐹‘(𝑥‘𝑤))) |
| 54 | 39, 50, 52, 53 | fmptco 6396 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ 𝑥) = (𝑤 ∈ 𝐴 ↦ (𝐹‘(𝑥‘𝑤)))) |
| 55 | 41 | feqmptd 6249 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 = (𝑤 ∈ 𝐴 ↦ (𝑦‘𝑤))) |
| 56 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑧 = (𝑦‘𝑤) → (𝐹‘𝑧) = (𝐹‘(𝑦‘𝑤))) |
| 57 | 42, 55, 52, 56 | fmptco 6396 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ 𝑦) = (𝑤 ∈ 𝐴 ↦ (𝐹‘(𝑦‘𝑤)))) |
| 58 | 36, 48, 49, 54, 57 | offval2 6914 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹 ∘ 𝑥) ∘𝑓
(+g‘𝑆)(𝐹 ∘ 𝑦)) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘(𝑥‘𝑤))(+g‘𝑆)(𝐹‘(𝑦‘𝑤))))) |
| 59 | 47, 58 | eqtr4d 2659 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑤 ∈ 𝐴 ↦ (𝐹‘((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)))) = ((𝐹 ∘ 𝑥) ∘𝑓
(+g‘𝑆)(𝐹 ∘ 𝑦))) |
| 60 | 35 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → 𝑅 ∈ Mnd) |
| 61 | 14, 43 | mndcl 17301 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ (𝑥‘𝑤) ∈ (Base‘𝑅) ∧ (𝑦‘𝑤) ∈ (Base‘𝑅)) → ((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)) ∈ (Base‘𝑅)) |
| 62 | 60, 39, 42, 61 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → ((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)) ∈ (Base‘𝑅)) |
| 63 | | eqid 2622 |
. . . . . . . . 9
⊢
(+g‘𝑌) = (+g‘𝑌) |
| 64 | 5, 19, 35, 36, 37, 40, 43, 63 | pwsplusgval 16150 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑌)𝑦) = (𝑥 ∘𝑓
(+g‘𝑅)𝑦)) |
| 65 | | fvexd 6203 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) ∈ V) |
| 66 | | fvexd 6203 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → (𝑦‘𝑤) ∈ V) |
| 67 | 36, 65, 66, 50, 55 | offval2 6914 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ∘𝑓
(+g‘𝑅)𝑦) = (𝑤 ∈ 𝐴 ↦ ((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)))) |
| 68 | 64, 67 | eqtrd 2656 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑌)𝑦) = (𝑤 ∈ 𝐴 ↦ ((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)))) |
| 69 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑧 = ((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)) → (𝐹‘𝑧) = (𝐹‘((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)))) |
| 70 | 62, 68, 52, 69 | fmptco 6396 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ (𝑥(+g‘𝑌)𝑦)) = (𝑤 ∈ 𝐴 ↦ (𝐹‘((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤))))) |
| 71 | 33, 8 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ Mnd) |
| 72 | | fco 6058 |
. . . . . . . . 9
⊢ ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑥:𝐴⟶(Base‘𝑅)) → (𝐹 ∘ 𝑥):𝐴⟶(Base‘𝑆)) |
| 73 | 51, 38, 72 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ 𝑥):𝐴⟶(Base‘𝑆)) |
| 74 | 10, 15, 27 | pwselbasb 16148 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → ((𝐹 ∘ 𝑥) ∈ (Base‘𝑍) ↔ (𝐹 ∘ 𝑥):𝐴⟶(Base‘𝑆))) |
| 75 | 71, 36, 74 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹 ∘ 𝑥) ∈ (Base‘𝑍) ↔ (𝐹 ∘ 𝑥):𝐴⟶(Base‘𝑆))) |
| 76 | 73, 75 | mpbird 247 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ 𝑥) ∈ (Base‘𝑍)) |
| 77 | | fco 6058 |
. . . . . . . . 9
⊢ ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑦:𝐴⟶(Base‘𝑅)) → (𝐹 ∘ 𝑦):𝐴⟶(Base‘𝑆)) |
| 78 | 51, 41, 77 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ 𝑦):𝐴⟶(Base‘𝑆)) |
| 79 | 10, 15, 27 | pwselbasb 16148 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → ((𝐹 ∘ 𝑦) ∈ (Base‘𝑍) ↔ (𝐹 ∘ 𝑦):𝐴⟶(Base‘𝑆))) |
| 80 | 71, 36, 79 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹 ∘ 𝑦) ∈ (Base‘𝑍) ↔ (𝐹 ∘ 𝑦):𝐴⟶(Base‘𝑆))) |
| 81 | 78, 80 | mpbird 247 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ 𝑦) ∈ (Base‘𝑍)) |
| 82 | | eqid 2622 |
. . . . . . 7
⊢
(+g‘𝑍) = (+g‘𝑍) |
| 83 | 10, 27, 71, 36, 76, 81, 44, 82 | pwsplusgval 16150 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹 ∘ 𝑥)(+g‘𝑍)(𝐹 ∘ 𝑦)) = ((𝐹 ∘ 𝑥) ∘𝑓
(+g‘𝑆)(𝐹 ∘ 𝑦))) |
| 84 | 59, 70, 83 | 3eqtr4d 2666 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ (𝑥(+g‘𝑌)𝑦)) = ((𝐹 ∘ 𝑥)(+g‘𝑍)(𝐹 ∘ 𝑦))) |
| 85 | 19, 63 | mndcl 17301 |
. . . . . . . 8
⊢ ((𝑌 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑌)𝑦) ∈ 𝐵) |
| 86 | 85 | 3expb 1266 |
. . . . . . 7
⊢ ((𝑌 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑌)𝑦) ∈ 𝐵) |
| 87 | 7, 86 | sylan 488 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑌)𝑦) ∈ 𝐵) |
| 88 | | coexg 7117 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (𝑥(+g‘𝑌)𝑦) ∈ 𝐵) → (𝐹 ∘ (𝑥(+g‘𝑌)𝑦)) ∈ V) |
| 89 | 33, 87, 88 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ (𝑥(+g‘𝑌)𝑦)) ∈ V) |
| 90 | | coeq2 5280 |
. . . . . . 7
⊢ (𝑔 = (𝑥(+g‘𝑌)𝑦) → (𝐹 ∘ 𝑔) = (𝐹 ∘ (𝑥(+g‘𝑌)𝑦))) |
| 91 | 90, 31 | fvmptg 6280 |
. . . . . 6
⊢ (((𝑥(+g‘𝑌)𝑦) ∈ 𝐵 ∧ (𝐹 ∘ (𝑥(+g‘𝑌)𝑦)) ∈ V) → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(𝑥(+g‘𝑌)𝑦)) = (𝐹 ∘ (𝑥(+g‘𝑌)𝑦))) |
| 92 | 87, 89, 91 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(𝑥(+g‘𝑌)𝑦)) = (𝐹 ∘ (𝑥(+g‘𝑌)𝑦))) |
| 93 | | coeq2 5280 |
. . . . . . . 8
⊢ (𝑔 = 𝑥 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝑥)) |
| 94 | 93, 31 | fvmptg 6280 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ (𝐹 ∘ 𝑥) ∈ (Base‘𝑍)) → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑥) = (𝐹 ∘ 𝑥)) |
| 95 | 37, 76, 94 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑥) = (𝐹 ∘ 𝑥)) |
| 96 | | coeq2 5280 |
. . . . . . . 8
⊢ (𝑔 = 𝑦 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝑦)) |
| 97 | 96, 31 | fvmptg 6280 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ (𝐹 ∘ 𝑦) ∈ (Base‘𝑍)) → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑦) = (𝐹 ∘ 𝑦)) |
| 98 | 40, 81, 97 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑦) = (𝐹 ∘ 𝑦)) |
| 99 | 95, 98 | oveq12d 6668 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑥)(+g‘𝑍)((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑦)) = ((𝐹 ∘ 𝑥)(+g‘𝑍)(𝐹 ∘ 𝑦))) |
| 100 | 84, 92, 99 | 3eqtr4d 2666 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(𝑥(+g‘𝑌)𝑦)) = (((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑥)(+g‘𝑍)((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑦))) |
| 101 | 100 | ralrimivva 2971 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(𝑥(+g‘𝑌)𝑦)) = (((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑥)(+g‘𝑍)((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑦))) |
| 102 | | eqid 2622 |
. . . . . . 7
⊢
(0g‘𝑌) = (0g‘𝑌) |
| 103 | 19, 102 | mndidcl 17308 |
. . . . . 6
⊢ (𝑌 ∈ Mnd →
(0g‘𝑌)
∈ 𝐵) |
| 104 | 7, 103 | syl 17 |
. . . . 5
⊢ (𝜑 → (0g‘𝑌) ∈ 𝐵) |
| 105 | | coexg 7117 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (0g‘𝑌) ∈ 𝐵) → (𝐹 ∘ (0g‘𝑌)) ∈ V) |
| 106 | 1, 104, 105 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘ (0g‘𝑌)) ∈ V) |
| 107 | | coeq2 5280 |
. . . . . 6
⊢ (𝑔 = (0g‘𝑌) → (𝐹 ∘ 𝑔) = (𝐹 ∘ (0g‘𝑌))) |
| 108 | 107, 31 | fvmptg 6280 |
. . . . 5
⊢
(((0g‘𝑌) ∈ 𝐵 ∧ (𝐹 ∘ (0g‘𝑌)) ∈ V) → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(0g‘𝑌)) = (𝐹 ∘ (0g‘𝑌))) |
| 109 | 104, 106,
108 | syl2anc 693 |
. . . 4
⊢ (𝜑 → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(0g‘𝑌)) = (𝐹 ∘ (0g‘𝑌))) |
| 110 | | ffn 6045 |
. . . . . . 7
⊢ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) → 𝐹 Fn (Base‘𝑅)) |
| 111 | 17, 110 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn (Base‘𝑅)) |
| 112 | | eqid 2622 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 113 | 14, 112 | mndidcl 17308 |
. . . . . . 7
⊢ (𝑅 ∈ Mnd →
(0g‘𝑅)
∈ (Base‘𝑅)) |
| 114 | 3, 113 | syl 17 |
. . . . . 6
⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 115 | | fcoconst 6401 |
. . . . . 6
⊢ ((𝐹 Fn (Base‘𝑅) ∧
(0g‘𝑅)
∈ (Base‘𝑅))
→ (𝐹 ∘ (𝐴 ×
{(0g‘𝑅)}))
= (𝐴 × {(𝐹‘(0g‘𝑅))})) |
| 116 | 111, 114,
115 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘ (𝐴 × {(0g‘𝑅)})) = (𝐴 × {(𝐹‘(0g‘𝑅))})) |
| 117 | 5, 112 | pws0g 17326 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐴 × {(0g‘𝑅)}) = (0g‘𝑌)) |
| 118 | 3, 4, 117 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝐴 × {(0g‘𝑅)}) = (0g‘𝑌)) |
| 119 | 118 | coeq2d 5284 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘ (𝐴 × {(0g‘𝑅)})) = (𝐹 ∘ (0g‘𝑌))) |
| 120 | | eqid 2622 |
. . . . . . . . 9
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 121 | 112, 120 | mhm0 17343 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
| 122 | 1, 121 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
| 123 | 122 | sneqd 4189 |
. . . . . 6
⊢ (𝜑 → {(𝐹‘(0g‘𝑅))} =
{(0g‘𝑆)}) |
| 124 | 123 | xpeq2d 5139 |
. . . . 5
⊢ (𝜑 → (𝐴 × {(𝐹‘(0g‘𝑅))}) = (𝐴 × {(0g‘𝑆)})) |
| 125 | 116, 119,
124 | 3eqtr3d 2664 |
. . . 4
⊢ (𝜑 → (𝐹 ∘ (0g‘𝑌)) = (𝐴 × {(0g‘𝑆)})) |
| 126 | 10, 120 | pws0g 17326 |
. . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐴 × {(0g‘𝑆)}) = (0g‘𝑍)) |
| 127 | 9, 4, 126 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (𝐴 × {(0g‘𝑆)}) = (0g‘𝑍)) |
| 128 | 109, 125,
127 | 3eqtrd 2660 |
. . 3
⊢ (𝜑 → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(0g‘𝑌)) = (0g‘𝑍)) |
| 129 | 32, 101, 128 | 3jca 1242 |
. 2
⊢ (𝜑 → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)):𝐵⟶(Base‘𝑍) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(𝑥(+g‘𝑌)𝑦)) = (((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑥)(+g‘𝑍)((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑦)) ∧ ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(0g‘𝑌)) = (0g‘𝑍))) |
| 130 | | eqid 2622 |
. . 3
⊢
(0g‘𝑍) = (0g‘𝑍) |
| 131 | 19, 27, 63, 82, 102, 130 | ismhm 17337 |
. 2
⊢ ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)) ∈ (𝑌 MndHom 𝑍) ↔ ((𝑌 ∈ Mnd ∧ 𝑍 ∈ Mnd) ∧ ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)):𝐵⟶(Base‘𝑍) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(𝑥(+g‘𝑌)𝑦)) = (((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑥)(+g‘𝑍)((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑦)) ∧ ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(0g‘𝑌)) = (0g‘𝑍)))) |
| 132 | 13, 129, 131 | sylanbrc 698 |
1
⊢ (𝜑 → (𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)) ∈ (𝑌 MndHom 𝑍)) |