MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotcan Structured version   Visualization version   GIF version

Theorem quotcan 24064
Description: Exact division with a multiple. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
quotcan.1 𝐻 = (𝐹𝑓 · 𝐺)
Assertion
Ref Expression
quotcan ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) = 𝐹)

Proof of Theorem quotcan
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 23956 . . . . . . . . 9 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 simp2 1062 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ∈ (Poly‘𝑆))
31, 2sseldi 3601 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ∈ (Poly‘ℂ))
4 simp1 1061 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 ∈ (Poly‘𝑆))
51, 4sseldi 3601 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 ∈ (Poly‘ℂ))
6 quotcan.1 . . . . . . . . . . . 12 𝐻 = (𝐹𝑓 · 𝐺)
7 plymulcl 23977 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ))
86, 7syl5eqel 2705 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐻 ∈ (Poly‘ℂ))
983adant3 1081 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐻 ∈ (Poly‘ℂ))
10 simp3 1063 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ≠ 0𝑝)
11 quotcl2 24057 . . . . . . . . . 10 ((𝐻 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) ∈ (Poly‘ℂ))
129, 3, 10, 11syl3anc 1326 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) ∈ (Poly‘ℂ))
13 plysubcl 23978 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝐻 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐹𝑓 − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
145, 12, 13syl2anc 693 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹𝑓 − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
15 plymul0or 24036 . . . . . . . 8 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹𝑓 − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) → ((𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹𝑓 − (𝐻 quot 𝐺)) = 0𝑝)))
163, 14, 15syl2anc 693 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹𝑓 − (𝐻 quot 𝐺)) = 0𝑝)))
17 cnex 10017 . . . . . . . . . . . . 13 ℂ ∈ V
1817a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ℂ ∈ V)
19 plyf 23954 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
204, 19syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹:ℂ⟶ℂ)
21 plyf 23954 . . . . . . . . . . . . 13 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
222, 21syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺:ℂ⟶ℂ)
23 mulcom 10022 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2423adantl 482 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2518, 20, 22, 24caofcom 6929 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹𝑓 · 𝐺) = (𝐺𝑓 · 𝐹))
266, 25syl5eq 2668 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐻 = (𝐺𝑓 · 𝐹))
2726oveq1d 6665 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺))) = ((𝐺𝑓 · 𝐹) ∘𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺))))
28 plyf 23954 . . . . . . . . . . 11 ((𝐻 quot 𝐺) ∈ (Poly‘ℂ) → (𝐻 quot 𝐺):ℂ⟶ℂ)
2912, 28syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺):ℂ⟶ℂ)
30 subdi 10463 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
3130adantl 482 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
3218, 22, 20, 29, 31caofdi 6933 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺))) = ((𝐺𝑓 · 𝐹) ∘𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺))))
3327, 32eqtr4d 2659 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺))) = (𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺))))
3433eqeq1d 2624 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺))) = 0𝑝))
3510neneqd 2799 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ¬ 𝐺 = 0𝑝)
36 biorf 420 . . . . . . . 8 𝐺 = 0𝑝 → ((𝐹𝑓 − (𝐻 quot 𝐺)) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹𝑓 − (𝐻 quot 𝐺)) = 0𝑝)))
3735, 36syl 17 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹𝑓 − (𝐻 quot 𝐺)) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹𝑓 − (𝐻 quot 𝐺)) = 0𝑝)))
3816, 34, 373bitr4d 300 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐹𝑓 − (𝐻 quot 𝐺)) = 0𝑝))
3938biimpd 219 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺))) = 0𝑝 → (𝐹𝑓 − (𝐻 quot 𝐺)) = 0𝑝))
40 eqid 2622 . . . . . . . . . . 11 (deg‘𝐺) = (deg‘𝐺)
41 eqid 2622 . . . . . . . . . . 11 (deg‘(𝐹𝑓 − (𝐻 quot 𝐺))) = (deg‘(𝐹𝑓 − (𝐻 quot 𝐺)))
4240, 41dgrmul 24026 . . . . . . . . . 10 (((𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) ∧ ((𝐹𝑓 − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ) ∧ (𝐹𝑓 − (𝐻 quot 𝐺)) ≠ 0𝑝)) → (deg‘(𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹𝑓 − (𝐻 quot 𝐺)))))
4342expr 643 . . . . . . . . 9 (((𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) ∧ (𝐹𝑓 − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) → ((𝐹𝑓 − (𝐻 quot 𝐺)) ≠ 0𝑝 → (deg‘(𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹𝑓 − (𝐻 quot 𝐺))))))
443, 10, 14, 43syl21anc 1325 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹𝑓 − (𝐻 quot 𝐺)) ≠ 0𝑝 → (deg‘(𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹𝑓 − (𝐻 quot 𝐺))))))
45 dgrcl 23989 . . . . . . . . . . . 12 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
462, 45syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘𝐺) ∈ ℕ0)
4746nn0red 11352 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘𝐺) ∈ ℝ)
48 dgrcl 23989 . . . . . . . . . . 11 ((𝐹𝑓 − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ) → (deg‘(𝐹𝑓 − (𝐻 quot 𝐺))) ∈ ℕ0)
4914, 48syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐹𝑓 − (𝐻 quot 𝐺))) ∈ ℕ0)
50 nn0addge1 11339 . . . . . . . . . 10 (((deg‘𝐺) ∈ ℝ ∧ (deg‘(𝐹𝑓 − (𝐻 quot 𝐺))) ∈ ℕ0) → (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝐹𝑓 − (𝐻 quot 𝐺)))))
5147, 49, 50syl2anc 693 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝐹𝑓 − (𝐻 quot 𝐺)))))
52 breq2 4657 . . . . . . . . 9 ((deg‘(𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹𝑓 − (𝐻 quot 𝐺)))) → ((deg‘𝐺) ≤ (deg‘(𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺)))) ↔ (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝐹𝑓 − (𝐻 quot 𝐺))))))
5351, 52syl5ibrcom 237 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘(𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹𝑓 − (𝐻 quot 𝐺)))) → (deg‘𝐺) ≤ (deg‘(𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺))))))
5444, 53syld 47 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹𝑓 − (𝐻 quot 𝐺)) ≠ 0𝑝 → (deg‘𝐺) ≤ (deg‘(𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺))))))
5533fveq2d 6195 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺)))) = (deg‘(𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺)))))
5655breq2d 4665 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘𝐺) ≤ (deg‘(𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺)))) ↔ (deg‘𝐺) ≤ (deg‘(𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺))))))
57 plymulcl 23977 . . . . . . . . . . . . 13 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐻 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺𝑓 · (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
583, 12, 57syl2anc 693 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐺𝑓 · (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
59 plysubcl 23978 . . . . . . . . . . . 12 ((𝐻 ∈ (Poly‘ℂ) ∧ (𝐺𝑓 · (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) → (𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺))) ∈ (Poly‘ℂ))
609, 58, 59syl2anc 693 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺))) ∈ (Poly‘ℂ))
61 dgrcl 23989 . . . . . . . . . . 11 ((𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺))) ∈ (Poly‘ℂ) → (deg‘(𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺)))) ∈ ℕ0)
6260, 61syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺)))) ∈ ℕ0)
6362nn0red 11352 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺)))) ∈ ℝ)
6447, 63lenltd 10183 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘𝐺) ≤ (deg‘(𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺)))) ↔ ¬ (deg‘(𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
6556, 64bitr3d 270 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘𝐺) ≤ (deg‘(𝐺𝑓 · (𝐹𝑓 − (𝐻 quot 𝐺)))) ↔ ¬ (deg‘(𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
6654, 65sylibd 229 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹𝑓 − (𝐻 quot 𝐺)) ≠ 0𝑝 → ¬ (deg‘(𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
6766necon4ad 2813 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘(𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺)))) < (deg‘𝐺) → (𝐹𝑓 − (𝐻 quot 𝐺)) = 0𝑝))
68 eqid 2622 . . . . . . 7 (𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺))) = (𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺)))
6968quotdgr 24058 . . . . . 6 ((𝐻 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → ((𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺))) = 0𝑝 ∨ (deg‘(𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
709, 3, 10, 69syl3anc 1326 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺))) = 0𝑝 ∨ (deg‘(𝐻𝑓 − (𝐺𝑓 · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
7139, 67, 70mpjaod 396 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹𝑓 − (𝐻 quot 𝐺)) = 0𝑝)
72 df-0p 23437 . . . 4 0𝑝 = (ℂ × {0})
7371, 72syl6eq 2672 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹𝑓 − (𝐻 quot 𝐺)) = (ℂ × {0}))
74 ofsubeq0 11017 . . . 4 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐻 quot 𝐺):ℂ⟶ℂ) → ((𝐹𝑓 − (𝐻 quot 𝐺)) = (ℂ × {0}) ↔ 𝐹 = (𝐻 quot 𝐺)))
7518, 20, 29, 74syl3anc 1326 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹𝑓 − (𝐻 quot 𝐺)) = (ℂ × {0}) ↔ 𝐹 = (𝐻 quot 𝐺)))
7673, 75mpbid 222 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 = (𝐻 quot 𝐺))
7776eqcomd 2628 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  {csn 4177   class class class wbr 4653   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  0cn0 11292  0𝑝c0p 23436  Polycply 23940  degcdgr 23943   quot cquot 24045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947  df-quot 24046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator