Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubcALTV Structured version   Visualization version   Unicode version

Theorem rhmsubcALTV 42108
Description: According to df-subc 16472, the subcategories  (Subcat `  C ) of a category  C are subsets of the homomorphisms of  C ( see subcssc 16500 and subcss2 16503). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcrescrhmALTV.u  |-  ( ph  ->  U  e.  V )
rngcrescrhmALTV.c  |-  C  =  (RngCatALTV `  U )
rngcrescrhmALTV.r  |-  ( ph  ->  R  =  ( Ring 
i^i  U ) )
rngcrescrhmALTV.h  |-  H  =  ( RingHom  |`  ( R  X.  R ) )
Assertion
Ref Expression
rhmsubcALTV  |-  ( ph  ->  H  e.  (Subcat `  (RngCatALTV `
 U ) ) )

Proof of Theorem rhmsubcALTV
Dummy variables  x  y  z  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngcrescrhmALTV.u . . . 4  |-  ( ph  ->  U  e.  V )
2 rngcrescrhmALTV.r . . . 4  |-  ( ph  ->  R  =  ( Ring 
i^i  U ) )
3 eqidd 2623 . . . 4  |-  ( ph  ->  (Rng  i^i  U )  =  (Rng  i^i  U ) )
41, 2, 3rhmsscrnghm 42026 . . 3  |-  ( ph  ->  ( RingHom  |`  ( R  X.  R ) )  C_cat  ( RngHomo  |`  ( (Rng  i^i  U )  X.  (Rng  i^i  U
) ) ) )
5 rngcrescrhmALTV.h . . . 4  |-  H  =  ( RingHom  |`  ( R  X.  R ) )
65a1i 11 . . 3  |-  ( ph  ->  H  =  ( RingHom  |`  ( R  X.  R ) ) )
7 eqid 2622 . . . 4  |-  (RngCatALTV `  U
)  =  (RngCatALTV `  U
)
8 eqid 2622 . . . 4  |-  (Rng  i^i  U )  =  (Rng  i^i  U )
9 eqid 2622 . . . 4  |-  ( Hom f  `  (RngCatALTV `
 U ) )  =  ( Hom f  `  (RngCatALTV `  U
) )
107, 8, 1, 9rngchomrnghmresALTV 41996 . . 3  |-  ( ph  ->  ( Hom f  `  (RngCatALTV `  U ) )  =  ( RngHomo  |`  (
(Rng  i^i  U )  X.  (Rng  i^i  U )
) ) )
114, 6, 103brtr4d 4685 . 2  |-  ( ph  ->  H  C_cat  ( Hom f  `  (RngCatALTV `  U ) ) )
12 rngcrescrhmALTV.c . . . . 5  |-  C  =  (RngCatALTV `  U )
131, 12, 2, 5rhmsubcALTVlem3 42106 . . . 4  |-  ( (
ph  /\  x  e.  R )  ->  (
( Id `  (RngCatALTV `  U ) ) `  x )  e.  ( x H x ) )
141, 12, 2, 5rhmsubcALTVlem4 42107 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  R )  /\  ( y  e.  R  /\  z  e.  R
) )  /\  (
f  e.  ( x H y )  /\  g  e.  ( y H z ) ) )  ->  ( g
( <. x ,  y
>. (comp `  (RngCatALTV `  U
) ) z ) f )  e.  ( x H z ) )
1514ralrimivva 2971 . . . . 5  |-  ( ( ( ph  /\  x  e.  R )  /\  (
y  e.  R  /\  z  e.  R )
)  ->  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.
(comp `  (RngCatALTV `  U
) ) z ) f )  e.  ( x H z ) )
1615ralrimivva 2971 . . . 4  |-  ( (
ph  /\  x  e.  R )  ->  A. y  e.  R  A. z  e.  R  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.
(comp `  (RngCatALTV `  U
) ) z ) f )  e.  ( x H z ) )
1713, 16jca 554 . . 3  |-  ( (
ph  /\  x  e.  R )  ->  (
( ( Id `  (RngCatALTV `
 U ) ) `
 x )  e.  ( x H x )  /\  A. y  e.  R  A. z  e.  R  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.
(comp `  (RngCatALTV `  U
) ) z ) f )  e.  ( x H z ) ) )
1817ralrimiva 2966 . 2  |-  ( ph  ->  A. x  e.  R  ( ( ( Id
`  (RngCatALTV `  U ) ) `
 x )  e.  ( x H x )  /\  A. y  e.  R  A. z  e.  R  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.
(comp `  (RngCatALTV `  U
) ) z ) f )  e.  ( x H z ) ) )
19 eqid 2622 . . 3  |-  ( Id
`  (RngCatALTV `  U ) )  =  ( Id `  (RngCatALTV `
 U ) )
20 eqid 2622 . . 3  |-  (comp `  (RngCatALTV `
 U ) )  =  (comp `  (RngCatALTV `  U ) )
217rngccatALTV 41990 . . . 4  |-  ( U  e.  V  ->  (RngCatALTV `  U )  e.  Cat )
221, 21syl 17 . . 3  |-  ( ph  ->  (RngCatALTV `  U )  e. 
Cat )
231, 12, 2, 5rhmsubcALTVlem1 42104 . . 3  |-  ( ph  ->  H  Fn  ( R  X.  R ) )
249, 19, 20, 22, 23issubc2 16496 . 2  |-  ( ph  ->  ( H  e.  (Subcat `  (RngCatALTV `  U ) )  <-> 
( H  C_cat  ( Hom f  `  (RngCatALTV `
 U ) )  /\  A. x  e.  R  ( ( ( Id `  (RngCatALTV `  U
) ) `  x
)  e.  ( x H x )  /\  A. y  e.  R  A. z  e.  R  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g ( <. x ,  y >. (comp `  (RngCatALTV `  U ) ) z ) f )  e.  ( x H z ) ) ) ) )
2511, 18, 24mpbir2and 957 1  |-  ( ph  ->  H  e.  (Subcat `  (RngCatALTV `
 U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573   <.cop 4183   class class class wbr 4653    X. cxp 5112    |` cres 5116   ` cfv 5888  (class class class)co 6650  compcco 15953   Catccat 16325   Idccid 16326   Hom f chomf 16327    C_cat cssc 16467  Subcatcsubc 16469   Ringcrg 18547   RingHom crh 18712  Rngcrng 41874   RngHomo crngh 41885  RngCatALTVcrngcALTV 41958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-hom 15966  df-cco 15967  df-0g 16102  df-cat 16329  df-cid 16330  df-homf 16331  df-ssc 16470  df-subc 16472  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-rnghom 18715  df-mgmhm 41779  df-rng0 41875  df-rnghomo 41887  df-rngcALTV 41960
This theorem is referenced by:  rhmsubcALTVcat  42109
  Copyright terms: Public domain W3C validator