MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlk Structured version   Visualization version   GIF version

Theorem rusgrnumwwlk 26870
Description: In a 𝐾-regular graph, the number of walks of a fixed length 𝑁 from a fixed vertex is 𝐾 to the power of 𝑁. By definition, (𝑁 WWalksN 𝐺) is the set of walks (as words) with length 𝑁, and (𝑃𝐿𝑁) is the number of walks with length 𝑁 starting at the vertex 𝑃. Because of the 𝐾-regularity, a walk can be continued in 𝐾 different ways at the end vertex of the walk, and this repeated 𝑁 times.

This theorem even holds for 𝑁 = 0: in this case, the walk consists of only one vertex 𝑃, so the number of walks of length 𝑁 = 0 starting with 𝑃 is (𝐾↑0) = 1. (Contributed by Alexander van der Vekens, 24-Aug-2018.) (Revised by AV, 7-May-2021.)

Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlk ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑃𝐿𝑁) = (𝐾𝑁))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑃,𝑛,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑤,𝐾
Allowed substitution hints:   𝐾(𝑣,𝑛)   𝐿(𝑤,𝑣,𝑛)

Proof of Theorem rusgrnumwwlk
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . . 8 (𝑥 = 0 → (𝑃𝐿𝑥) = (𝑃𝐿0))
2 oveq2 6658 . . . . . . . 8 (𝑥 = 0 → (𝐾𝑥) = (𝐾↑0))
31, 2eqeq12d 2637 . . . . . . 7 (𝑥 = 0 → ((𝑃𝐿𝑥) = (𝐾𝑥) ↔ (𝑃𝐿0) = (𝐾↑0)))
43imbi2d 330 . . . . . 6 (𝑥 = 0 → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿0) = (𝐾↑0))))
5 oveq2 6658 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃𝐿𝑥) = (𝑃𝐿𝑦))
6 oveq2 6658 . . . . . . . 8 (𝑥 = 𝑦 → (𝐾𝑥) = (𝐾𝑦))
75, 6eqeq12d 2637 . . . . . . 7 (𝑥 = 𝑦 → ((𝑃𝐿𝑥) = (𝐾𝑥) ↔ (𝑃𝐿𝑦) = (𝐾𝑦)))
87imbi2d 330 . . . . . 6 (𝑥 = 𝑦 → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑦) = (𝐾𝑦))))
9 oveq2 6658 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑃𝐿𝑥) = (𝑃𝐿(𝑦 + 1)))
10 oveq2 6658 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝐾𝑥) = (𝐾↑(𝑦 + 1)))
119, 10eqeq12d 2637 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑃𝐿𝑥) = (𝐾𝑥) ↔ (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1))))
1211imbi2d 330 . . . . . 6 (𝑥 = (𝑦 + 1) → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1)))))
13 oveq2 6658 . . . . . . . 8 (𝑥 = 𝑁 → (𝑃𝐿𝑥) = (𝑃𝐿𝑁))
14 oveq2 6658 . . . . . . . 8 (𝑥 = 𝑁 → (𝐾𝑥) = (𝐾𝑁))
1513, 14eqeq12d 2637 . . . . . . 7 (𝑥 = 𝑁 → ((𝑃𝐿𝑥) = (𝐾𝑥) ↔ (𝑃𝐿𝑁) = (𝐾𝑁)))
1615imbi2d 330 . . . . . 6 (𝑥 = 𝑁 → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑁) = (𝐾𝑁))))
17 rusgrusgr 26460 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph )
18 usgruspgr 26073 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph )
1917, 18syl 17 . . . . . . . 8 (𝐺 RegUSGraph 𝐾𝐺 ∈ USPGraph )
20 simpr 477 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝑃𝑉) → 𝑃𝑉)
21 rusgrnumwwlk.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
22 rusgrnumwwlk.l . . . . . . . . 9 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
2321, 22rusgrnumwwlkb0 26866 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑃𝐿0) = 1)
2419, 20, 23syl2anr 495 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿0) = 1)
25 simpl 473 . . . . . . . . . . 11 ((𝑉 ∈ Fin ∧ 𝑃𝑉) → 𝑉 ∈ Fin)
2625, 17anim12ci 591 . . . . . . . . . 10 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
2721isfusgr 26210 . . . . . . . . . 10 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
2826, 27sylibr 224 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph )
29 simpr 477 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾)
30 ne0i 3921 . . . . . . . . . 10 (𝑃𝑉𝑉 ≠ ∅)
3130ad2antlr 763 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝑉 ≠ ∅)
3221frusgrnn0 26467 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
3332nn0cnd 11353 . . . . . . . . 9 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℂ)
3428, 29, 31, 33syl3anc 1326 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 ∈ ℂ)
3534exp0d 13002 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾↑0) = 1)
3624, 35eqtr4d 2659 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿0) = (𝐾↑0))
37 simpl 473 . . . . . . . . . . 11 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ∈ Fin ∧ 𝑃𝑉))
3837anim1i 592 . . . . . . . . . 10 ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) ∧ 𝑦 ∈ ℕ0) → ((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝑦 ∈ ℕ0))
39 df-3an 1039 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑦 ∈ ℕ0) ↔ ((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝑦 ∈ ℕ0))
4038, 39sylibr 224 . . . . . . . . 9 ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) ∧ 𝑦 ∈ ℕ0) → (𝑉 ∈ Fin ∧ 𝑃𝑉𝑦 ∈ ℕ0))
4121, 22rusgrnumwwlks 26869 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑦 ∈ ℕ0)) → ((𝑃𝐿𝑦) = (𝐾𝑦) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1))))
4229, 40, 41syl2an2r 876 . . . . . . . 8 ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) ∧ 𝑦 ∈ ℕ0) → ((𝑃𝐿𝑦) = (𝐾𝑦) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1))))
4342expcom 451 . . . . . . 7 (𝑦 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → ((𝑃𝐿𝑦) = (𝐾𝑦) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1)))))
4443a2d 29 . . . . . 6 (𝑦 ∈ ℕ0 → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑦) = (𝐾𝑦)) → (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1)))))
454, 8, 12, 16, 36, 44nn0ind 11472 . . . . 5 (𝑁 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑁) = (𝐾𝑁)))
4645expd 452 . . . 4 (𝑁 ∈ ℕ0 → ((𝑉 ∈ Fin ∧ 𝑃𝑉) → (𝐺 RegUSGraph 𝐾 → (𝑃𝐿𝑁) = (𝐾𝑁))))
4746com12 32 . . 3 ((𝑉 ∈ Fin ∧ 𝑃𝑉) → (𝑁 ∈ ℕ0 → (𝐺 RegUSGraph 𝐾 → (𝑃𝐿𝑁) = (𝐾𝑁))))
48473impia 1261 . 2 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝐺 RegUSGraph 𝐾 → (𝑃𝐿𝑁) = (𝐾𝑁)))
4948impcom 446 1 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑃𝐿𝑁) = (𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  {crab 2916  c0 3915   class class class wbr 4653  cfv 5888  (class class class)co 6650  cmpt2 6652  Fincfn 7955  cc 9934  0cc0 9936  1c1 9937   + caddc 9939  0cn0 11292  cexp 12860  #chash 13117  Vtxcvtx 25874   USPGraph cuspgr 26043   USGraph cusgr 26044   FinUSGraph cfusgr 26208   RegUSGraph crusgr 26452   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  rusgrnumwwlkg  26871
  Copyright terms: Public domain W3C validator