| Step | Hyp | Ref
| Expression |
| 1 | | seqhomo.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 2 | | eluzfz2 12349 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
| 3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
| 4 | | eleq1 2689 |
. . . . . 6
⊢ (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁))) |
| 5 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑀)) |
| 6 | 5 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑀))) |
| 7 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘𝑀)) |
| 8 | 6, 7 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑥 = 𝑀 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀))) |
| 9 | 4, 8 | imbi12d 334 |
. . . . 5
⊢ (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ (𝑀 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)))) |
| 10 | 9 | imbi2d 330 |
. . . 4
⊢ (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀))))) |
| 11 | | eleq1 2689 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁))) |
| 12 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛)) |
| 13 | 12 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑛))) |
| 14 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘𝑛)) |
| 15 | 13, 14 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛))) |
| 16 | 11, 15 | imbi12d 334 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ (𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)))) |
| 17 | 16 | imbi2d 330 |
. . . 4
⊢ (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛))))) |
| 18 | | eleq1 2689 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁))) |
| 19 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))) |
| 20 | 19 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))) |
| 21 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))) |
| 22 | 20, 21 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))) |
| 23 | 18, 22 | imbi12d 334 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))) |
| 24 | 23 | imbi2d 330 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))))) |
| 25 | | eleq1 2689 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁))) |
| 26 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 27 | 26 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑁))) |
| 28 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘𝑁)) |
| 29 | 27, 28 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))) |
| 30 | 25, 29 | imbi12d 334 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)))) |
| 31 | 30 | imbi2d 330 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))))) |
| 32 | | eluzfz1 12348 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| 33 | 1, 32 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 34 | | seqhomo.5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) |
| 35 | 34 | ralrimiva 2966 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) |
| 36 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → (𝐹‘𝑥) = (𝐹‘𝑀)) |
| 37 | 36 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (𝐻‘(𝐹‘𝑥)) = (𝐻‘(𝐹‘𝑀))) |
| 38 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (𝐺‘𝑥) = (𝐺‘𝑀)) |
| 39 | 37, 38 | eqeq12d 2637 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → ((𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥) ↔ (𝐻‘(𝐹‘𝑀)) = (𝐺‘𝑀))) |
| 40 | 39 | rspcv 3305 |
. . . . . . . 8
⊢ (𝑀 ∈ (𝑀...𝑁) → (∀𝑥 ∈ (𝑀...𝑁)(𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥) → (𝐻‘(𝐹‘𝑀)) = (𝐺‘𝑀))) |
| 41 | 33, 35, 40 | sylc 65 |
. . . . . . 7
⊢ (𝜑 → (𝐻‘(𝐹‘𝑀)) = (𝐺‘𝑀)) |
| 42 | | eluzel2 11692 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 43 | | seq1 12814 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| 44 | 1, 42, 43 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| 45 | 44 | fveq2d 6195 |
. . . . . . 7
⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (𝐻‘(𝐹‘𝑀))) |
| 46 | | seq1 12814 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → (seq𝑀(𝑄, 𝐺)‘𝑀) = (𝐺‘𝑀)) |
| 47 | 1, 42, 46 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (seq𝑀(𝑄, 𝐺)‘𝑀) = (𝐺‘𝑀)) |
| 48 | 41, 45, 47 | 3eqtr4d 2666 |
. . . . . 6
⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)) |
| 49 | 48 | a1d 25 |
. . . . 5
⊢ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀))) |
| 50 | 49 | a1i 11 |
. . . 4
⊢ (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)))) |
| 51 | | simprl 794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 52 | | simprr 796 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
| 53 | | peano2fzr 12354 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁)) |
| 54 | 51, 52, 53 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁)) |
| 55 | 54 | expr 643 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁))) |
| 56 | 55 | imim1d 82 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)))) |
| 57 | | oveq1 6657 |
. . . . . . . . . 10
⊢ ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))) |
| 58 | | seqp1 12816 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
| 59 | 58 | ad2antrl 764 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
| 60 | 59 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
| 61 | | seqhomo.4 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) |
| 62 | 61 | ralrimivva 2971 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) |
| 63 | 62 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) |
| 64 | | elfzuz3 12339 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑛)) |
| 65 | | fzss2 12381 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈
(ℤ≥‘𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
| 66 | 54, 64, 65 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
| 67 | 66 | sselda 3603 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝑥 ∈ (𝑀...𝑁)) |
| 68 | | seqhomo.2 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
| 69 | 68 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
| 70 | 67, 69 | syldan 487 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐹‘𝑥) ∈ 𝑆) |
| 71 | | seqhomo.1 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 72 | 71 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 73 | 51, 70, 72 | seqcl 12821 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆) |
| 74 | 68 | ralrimiva 2966 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) ∈ 𝑆) |
| 75 | 74 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) ∈ 𝑆) |
| 76 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑛 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑛 + 1))) |
| 77 | 76 | eleq1d 2686 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) |
| 78 | 77 | rspcv 3305 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) ∈ 𝑆 → (𝐹‘(𝑛 + 1)) ∈ 𝑆)) |
| 79 | 52, 75, 78 | sylc 65 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ 𝑆) |
| 80 | | oveq1 6657 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥 + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) |
| 81 | 80 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝐻‘(𝑥 + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦))) |
| 82 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝐻‘𝑥) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑛))) |
| 83 | 82 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦))) |
| 84 | 81, 83 | eqeq12d 2637 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦)))) |
| 85 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
| 86 | 85 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
| 87 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻‘𝑦) = (𝐻‘(𝐹‘(𝑛 + 1)))) |
| 88 | 87 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))) |
| 89 | 86, 88 | eqeq12d 2637 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))) |
| 90 | 84, 89 | rspc2v 3322 |
. . . . . . . . . . . . . 14
⊢
(((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))) |
| 91 | 73, 79, 90 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))) |
| 92 | 63, 91 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))) |
| 93 | 35 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥 ∈ (𝑀...𝑁)(𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) |
| 94 | 76 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑛 + 1) → (𝐻‘(𝐹‘𝑥)) = (𝐻‘(𝐹‘(𝑛 + 1)))) |
| 95 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑛 + 1) → (𝐺‘𝑥) = (𝐺‘(𝑛 + 1))) |
| 96 | 94, 95 | eqeq12d 2637 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑛 + 1) → ((𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥) ↔ (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1)))) |
| 97 | 96 | rspcv 3305 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑥 ∈ (𝑀...𝑁)(𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥) → (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1)))) |
| 98 | 52, 93, 97 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1))) |
| 99 | 98 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1)))) |
| 100 | 60, 92, 99 | 3eqtrd 2660 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1)))) |
| 101 | | seqp1 12816 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))) |
| 102 | 101 | ad2antrl 764 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))) |
| 103 | 100, 102 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) ↔ ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))) |
| 104 | 57, 103 | syl5ibr 236 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))) |
| 105 | 104 | expr 643 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))) |
| 106 | 105 | a2d 29 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))) |
| 107 | 56, 106 | syld 47 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))) |
| 108 | 107 | expcom 451 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝜑 → ((𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))))) |
| 109 | 108 | a2d 29 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))))) |
| 110 | 10, 17, 24, 31, 50, 109 | uzind4 11746 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)))) |
| 111 | 1, 110 | mpcom 38 |
. 2
⊢ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))) |
| 112 | 3, 111 | mpd 15 |
1
⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)) |