MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqof Structured version   Visualization version   Unicode version

Theorem seqof 12858
Description: Distribute function operation through a sequence. Note that  G ( z ) is an implicit function on  z. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
seqof.1  |-  ( ph  ->  A  e.  V )
seqof.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqof.3  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  =  ( z  e.  A  |->  ( G `  x ) ) )
Assertion
Ref Expression
seqof  |-  ( ph  ->  (  seq M (  oF  .+  ,  F ) `  N
)  =  ( z  e.  A  |->  (  seq M (  .+  ,  G ) `  N
) ) )
Distinct variable groups:    x, z, A    x, F, z    x, G    x, M, z    x, N, z    x,  .+ , z    ph, x, z
Allowed substitution hints:    G( z)    V( x, z)

Proof of Theorem seqof
Dummy variables  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqof.2 . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 fvex 6201 . . . . . . . . 9  |-  ( G `
 x )  e. 
_V
32rgenw 2924 . . . . . . . 8  |-  A. z  e.  A  ( G `  x )  e.  _V
4 eqid 2622 . . . . . . . . 9  |-  ( z  e.  A  |->  ( G `
 x ) )  =  ( z  e.  A  |->  ( G `  x ) )
54fnmpt 6020 . . . . . . . 8  |-  ( A. z  e.  A  ( G `  x )  e.  _V  ->  ( z  e.  A  |->  ( G `
 x ) )  Fn  A )
63, 5mp1i 13 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( z  e.  A  |->  ( G `
 x ) )  Fn  A )
7 seqof.3 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  =  ( z  e.  A  |->  ( G `  x ) ) )
87fneq1d 5981 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( ( F `  x )  Fn  A  <->  ( z  e.  A  |->  ( G `  x ) )  Fn  A ) )
96, 8mpbird 247 . . . . . 6  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  Fn  A
)
10 fvex 6201 . . . . . . 7  |-  ( F `
 x )  e. 
_V
11 fneq1 5979 . . . . . . 7  |-  ( z  =  ( F `  x )  ->  (
z  Fn  A  <->  ( F `  x )  Fn  A
) )
1210, 11elab 3350 . . . . . 6  |-  ( ( F `  x )  e.  { z  |  z  Fn  A }  <->  ( F `  x )  Fn  A )
139, 12sylibr 224 . . . . 5  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  {
z  |  z  Fn  A } )
14 simprl 794 . . . . . . . . 9  |-  ( (
ph  /\  ( x  Fn  A  /\  y  Fn  A ) )  ->  x  Fn  A )
15 simprr 796 . . . . . . . . 9  |-  ( (
ph  /\  ( x  Fn  A  /\  y  Fn  A ) )  -> 
y  Fn  A )
16 seqof.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  V )
1716adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( x  Fn  A  /\  y  Fn  A ) )  ->  A  e.  V )
18 inidm 3822 . . . . . . . . 9  |-  ( A  i^i  A )  =  A
1914, 15, 17, 17, 18offn 6908 . . . . . . . 8  |-  ( (
ph  /\  ( x  Fn  A  /\  y  Fn  A ) )  -> 
( x  oF  .+  y )  Fn  A )
2019ex 450 . . . . . . 7  |-  ( ph  ->  ( ( x  Fn  A  /\  y  Fn  A )  ->  (
x  oF  .+  y )  Fn  A
) )
21 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
22 fneq1 5979 . . . . . . . . 9  |-  ( z  =  x  ->  (
z  Fn  A  <->  x  Fn  A ) )
2321, 22elab 3350 . . . . . . . 8  |-  ( x  e.  { z  |  z  Fn  A }  <->  x  Fn  A )
24 vex 3203 . . . . . . . . 9  |-  y  e. 
_V
25 fneq1 5979 . . . . . . . . 9  |-  ( z  =  y  ->  (
z  Fn  A  <->  y  Fn  A ) )
2624, 25elab 3350 . . . . . . . 8  |-  ( y  e.  { z  |  z  Fn  A }  <->  y  Fn  A )
2723, 26anbi12i 733 . . . . . . 7  |-  ( ( x  e.  { z  |  z  Fn  A }  /\  y  e.  {
z  |  z  Fn  A } )  <->  ( x  Fn  A  /\  y  Fn  A ) )
28 ovex 6678 . . . . . . . 8  |-  ( x  oF  .+  y
)  e.  _V
29 fneq1 5979 . . . . . . . 8  |-  ( z  =  ( x  oF  .+  y )  ->  ( z  Fn  A  <->  ( x  oF  .+  y )  Fn  A ) )
3028, 29elab 3350 . . . . . . 7  |-  ( ( x  oF  .+  y )  e.  {
z  |  z  Fn  A }  <->  ( x  oF  .+  y )  Fn  A )
3120, 27, 303imtr4g 285 . . . . . 6  |-  ( ph  ->  ( ( x  e. 
{ z  |  z  Fn  A }  /\  y  e.  { z  |  z  Fn  A } )  ->  (
x  oF  .+  y )  e.  {
z  |  z  Fn  A } ) )
3231imp 445 . . . . 5  |-  ( (
ph  /\  ( x  e.  { z  |  z  Fn  A }  /\  y  e.  { z  |  z  Fn  A } ) )  -> 
( x  oF  .+  y )  e. 
{ z  |  z  Fn  A } )
331, 13, 32seqcl 12821 . . . 4  |-  ( ph  ->  (  seq M (  oF  .+  ,  F ) `  N
)  e.  { z  |  z  Fn  A } )
34 fvex 6201 . . . . 5  |-  (  seq M (  oF  .+  ,  F ) `
 N )  e. 
_V
35 fneq1 5979 . . . . 5  |-  ( z  =  (  seq M
(  oF  .+  ,  F ) `  N
)  ->  ( z  Fn  A  <->  (  seq M
(  oF  .+  ,  F ) `  N
)  Fn  A ) )
3634, 35elab 3350 . . . 4  |-  ( (  seq M (  oF  .+  ,  F
) `  N )  e.  { z  |  z  Fn  A }  <->  (  seq M (  oF  .+  ,  F ) `
 N )  Fn  A )
3733, 36sylib 208 . . 3  |-  ( ph  ->  (  seq M (  oF  .+  ,  F ) `  N
)  Fn  A )
38 dffn5 6241 . . 3  |-  ( (  seq M (  oF  .+  ,  F
) `  N )  Fn  A  <->  (  seq M
(  oF  .+  ,  F ) `  N
)  =  ( z  e.  A  |->  ( (  seq M (  oF  .+  ,  F
) `  N ) `  z ) ) )
3937, 38sylib 208 . 2  |-  ( ph  ->  (  seq M (  oF  .+  ,  F ) `  N
)  =  ( z  e.  A  |->  ( (  seq M (  oF  .+  ,  F
) `  N ) `  z ) ) )
40 fveq1 6190 . . . . . 6  |-  ( w  =  (  seq M
(  oF  .+  ,  F ) `  N
)  ->  ( w `  z )  =  ( (  seq M (  oF  .+  ,  F ) `  N
) `  z )
)
41 eqid 2622 . . . . . 6  |-  ( w  e.  _V  |->  ( w `
 z ) )  =  ( w  e. 
_V  |->  ( w `  z ) )
42 fvex 6201 . . . . . 6  |-  ( (  seq M (  oF  .+  ,  F
) `  N ) `  z )  e.  _V
4340, 41, 42fvmpt 6282 . . . . 5  |-  ( (  seq M (  oF  .+  ,  F
) `  N )  e.  _V  ->  ( (
w  e.  _V  |->  ( w `  z ) ) `  (  seq M (  oF  .+  ,  F ) `
 N ) )  =  ( (  seq M (  oF  .+  ,  F ) `
 N ) `  z ) )
4434, 43mp1i 13 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  (
( w  e.  _V  |->  ( w `  z
) ) `  (  seq M (  oF  .+  ,  F ) `
 N ) )  =  ( (  seq M (  oF  .+  ,  F ) `
 N ) `  z ) )
4532adantlr 751 . . . . 5  |-  ( ( ( ph  /\  z  e.  A )  /\  (
x  e.  { z  |  z  Fn  A }  /\  y  e.  {
z  |  z  Fn  A } ) )  ->  ( x  oF  .+  y )  e.  { z  |  z  Fn  A }
)
4613adantlr 751 . . . . 5  |-  ( ( ( ph  /\  z  e.  A )  /\  x  e.  ( M ... N
) )  ->  ( F `  x )  e.  { z  |  z  Fn  A } )
471adantr 481 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  N  e.  ( ZZ>= `  M )
)
48 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  Fn  A  /\  y  Fn  A )
)  /\  z  e.  A )  ->  (
x `  z )  =  ( x `  z ) )
49 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  Fn  A  /\  y  Fn  A )
)  /\  z  e.  A )  ->  (
y `  z )  =  ( y `  z ) )
5014, 15, 17, 17, 18, 48, 49ofval 6906 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  Fn  A  /\  y  Fn  A )
)  /\  z  e.  A )  ->  (
( x  oF  .+  y ) `  z )  =  ( ( x `  z
)  .+  ( y `  z ) ) )
5150an32s 846 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  A )  /\  (
x  Fn  A  /\  y  Fn  A )
)  ->  ( (
x  oF  .+  y ) `  z
)  =  ( ( x `  z ) 
.+  ( y `  z ) ) )
52 fveq1 6190 . . . . . . . . 9  |-  ( w  =  ( x  oF  .+  y )  ->  ( w `  z )  =  ( ( x  oF  .+  y ) `  z ) )
53 fvex 6201 . . . . . . . . 9  |-  ( ( x  oF  .+  y ) `  z
)  e.  _V
5452, 41, 53fvmpt 6282 . . . . . . . 8  |-  ( ( x  oF  .+  y )  e.  _V  ->  ( ( w  e. 
_V  |->  ( w `  z ) ) `  ( x  oF  .+  y ) )  =  ( ( x  oF  .+  y ) `
 z ) )
5528, 54ax-mp 5 . . . . . . 7  |-  ( ( w  e.  _V  |->  ( w `  z ) ) `  ( x  oF  .+  y
) )  =  ( ( x  oF  .+  y ) `  z )
56 fveq1 6190 . . . . . . . . . 10  |-  ( w  =  x  ->  (
w `  z )  =  ( x `  z ) )
57 fvex 6201 . . . . . . . . . 10  |-  ( x `
 z )  e. 
_V
5856, 41, 57fvmpt 6282 . . . . . . . . 9  |-  ( x  e.  _V  ->  (
( w  e.  _V  |->  ( w `  z
) ) `  x
)  =  ( x `
 z ) )
5921, 58ax-mp 5 . . . . . . . 8  |-  ( ( w  e.  _V  |->  ( w `  z ) ) `  x )  =  ( x `  z )
60 fveq1 6190 . . . . . . . . . 10  |-  ( w  =  y  ->  (
w `  z )  =  ( y `  z ) )
61 fvex 6201 . . . . . . . . . 10  |-  ( y `
 z )  e. 
_V
6260, 41, 61fvmpt 6282 . . . . . . . . 9  |-  ( y  e.  _V  ->  (
( w  e.  _V  |->  ( w `  z
) ) `  y
)  =  ( y `
 z ) )
6324, 62ax-mp 5 . . . . . . . 8  |-  ( ( w  e.  _V  |->  ( w `  z ) ) `  y )  =  ( y `  z )
6459, 63oveq12i 6662 . . . . . . 7  |-  ( ( ( w  e.  _V  |->  ( w `  z
) ) `  x
)  .+  ( (
w  e.  _V  |->  ( w `  z ) ) `  y ) )  =  ( ( x `  z ) 
.+  ( y `  z ) )
6551, 55, 643eqtr4g 2681 . . . . . 6  |-  ( ( ( ph  /\  z  e.  A )  /\  (
x  Fn  A  /\  y  Fn  A )
)  ->  ( (
w  e.  _V  |->  ( w `  z ) ) `  ( x  oF  .+  y
) )  =  ( ( ( w  e. 
_V  |->  ( w `  z ) ) `  x )  .+  (
( w  e.  _V  |->  ( w `  z
) ) `  y
) ) )
6627, 65sylan2b 492 . . . . 5  |-  ( ( ( ph  /\  z  e.  A )  /\  (
x  e.  { z  |  z  Fn  A }  /\  y  e.  {
z  |  z  Fn  A } ) )  ->  ( ( w  e.  _V  |->  ( w `
 z ) ) `
 ( x  oF  .+  y ) )  =  ( ( ( w  e.  _V  |->  ( w `  z
) ) `  x
)  .+  ( (
w  e.  _V  |->  ( w `  z ) ) `  y ) ) )
67 fveq1 6190 . . . . . . . 8  |-  ( w  =  ( F `  x )  ->  (
w `  z )  =  ( ( F `
 x ) `  z ) )
68 fvex 6201 . . . . . . . 8  |-  ( ( F `  x ) `
 z )  e. 
_V
6967, 41, 68fvmpt 6282 . . . . . . 7  |-  ( ( F `  x )  e.  _V  ->  (
( w  e.  _V  |->  ( w `  z
) ) `  ( F `  x )
)  =  ( ( F `  x ) `
 z ) )
7010, 69ax-mp 5 . . . . . 6  |-  ( ( w  e.  _V  |->  ( w `  z ) ) `  ( F `
 x ) )  =  ( ( F `
 x ) `  z )
717adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  A )  /\  x  e.  ( M ... N
) )  ->  ( F `  x )  =  ( z  e.  A  |->  ( G `  x ) ) )
7271fveq1d 6193 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  A )  /\  x  e.  ( M ... N
) )  ->  (
( F `  x
) `  z )  =  ( ( z  e.  A  |->  ( G `
 x ) ) `
 z ) )
73 simplr 792 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  A )  /\  x  e.  ( M ... N
) )  ->  z  e.  A )
744fvmpt2 6291 . . . . . . . 8  |-  ( ( z  e.  A  /\  ( G `  x )  e.  _V )  -> 
( ( z  e.  A  |->  ( G `  x ) ) `  z )  =  ( G `  x ) )
7573, 2, 74sylancl 694 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  A )  /\  x  e.  ( M ... N
) )  ->  (
( z  e.  A  |->  ( G `  x
) ) `  z
)  =  ( G `
 x ) )
7672, 75eqtrd 2656 . . . . . 6  |-  ( ( ( ph  /\  z  e.  A )  /\  x  e.  ( M ... N
) )  ->  (
( F `  x
) `  z )  =  ( G `  x ) )
7770, 76syl5eq 2668 . . . . 5  |-  ( ( ( ph  /\  z  e.  A )  /\  x  e.  ( M ... N
) )  ->  (
( w  e.  _V  |->  ( w `  z
) ) `  ( F `  x )
)  =  ( G `
 x ) )
7845, 46, 47, 66, 77seqhomo 12848 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  (
( w  e.  _V  |->  ( w `  z
) ) `  (  seq M (  oF  .+  ,  F ) `
 N ) )  =  (  seq M
(  .+  ,  G
) `  N )
)
7944, 78eqtr3d 2658 . . 3  |-  ( (
ph  /\  z  e.  A )  ->  (
(  seq M (  oF  .+  ,  F
) `  N ) `  z )  =  (  seq M (  .+  ,  G ) `  N
) )
8079mpteq2dva 4744 . 2  |-  ( ph  ->  ( z  e.  A  |->  ( (  seq M
(  oF  .+  ,  F ) `  N
) `  z )
)  =  ( z  e.  A  |->  (  seq M (  .+  ,  G ) `  N
) ) )
8139, 80eqtrd 2656 1  |-  ( ph  ->  (  seq M (  oF  .+  ,  F ) `  N
)  =  ( z  e.  A  |->  (  seq M (  .+  ,  G ) `  N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200    |-> cmpt 4729    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    oFcof 6895   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  seqof2  12859  mtest  24158  pserulm  24176  knoppcnlem7  32489
  Copyright terms: Public domain W3C validator