| Step | Hyp | Ref
| Expression |
| 1 | | sge0reuzb.k |
. . 3
⊢
Ⅎ𝑘𝜑 |
| 2 | | sge0reuzb.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 3 | | sge0reuzb.z |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 4 | | sge0reuzb.b |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ (0[,)+∞)) |
| 5 | 1, 2, 3, 4 | sge0reuz 40664 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = sup(ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, <
)) |
| 6 | | nfv 1843 |
. . . 4
⊢
Ⅎ𝑛𝜑 |
| 7 | | eqid 2622 |
. . . 4
⊢ (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) = (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) |
| 8 | | nfv 1843 |
. . . . . 6
⊢
Ⅎ𝑘 𝑛 ∈ 𝑍 |
| 9 | 1, 8 | nfan 1828 |
. . . . 5
⊢
Ⅎ𝑘(𝜑 ∧ 𝑛 ∈ 𝑍) |
| 10 | | fzfid 12772 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀...𝑛) ∈ Fin) |
| 11 | | elfzuz 12338 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 12 | 11, 3 | syl6eleqr 2712 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ 𝑍) |
| 13 | 12 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ 𝑍) |
| 14 | | rge0ssre 12280 |
. . . . . . . 8
⊢
(0[,)+∞) ⊆ ℝ |
| 15 | 14, 4 | sseldi 3601 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| 16 | 13, 15 | syldan 487 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ) |
| 17 | 16 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ) |
| 18 | 9, 10, 17 | fsumreclf 39808 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ℝ) |
| 19 | 6, 7, 18 | rnmptssd 39385 |
. . 3
⊢ (𝜑 → ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ) |
| 20 | | uzid 11702 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 21 | 2, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 22 | 21, 3 | syl6eleqr 2712 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 23 | | eqidd 2623 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵) |
| 24 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀)) |
| 25 | 24 | sumeq1d 14431 |
. . . . . . . 8
⊢ (𝑛 = 𝑀 → Σ𝑘 ∈ (𝑀...𝑛)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵) |
| 26 | 25 | eqeq2d 2632 |
. . . . . . 7
⊢ (𝑛 = 𝑀 → (Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 ↔ Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵)) |
| 27 | 26 | rspcev 3309 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵) → ∃𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) |
| 28 | 22, 23, 27 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) |
| 29 | | sumex 14418 |
. . . . . 6
⊢
Σ𝑘 ∈
(𝑀...𝑀)𝐵 ∈ V |
| 30 | 29 | a1i 11 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ V) |
| 31 | 7, 28, 30 | elrnmptd 39366 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) |
| 32 | | ne0i 3921 |
. . . 4
⊢
(Σ𝑘 ∈
(𝑀...𝑀)𝐵 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅) |
| 33 | 31, 32 | syl 17 |
. . 3
⊢ (𝜑 → ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅) |
| 34 | | sge0reuzb.x |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) |
| 35 | | sge0reuzb.p |
. . . . 5
⊢
Ⅎ𝑥𝜑 |
| 36 | | vex 3203 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
| 37 | 7 | elrnmpt 5372 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛 ∈ 𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)) |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛 ∈ 𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) |
| 39 | 38 | biimpi 206 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑛 ∈ 𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) |
| 40 | 39 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → ∃𝑛 ∈ 𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) |
| 41 | | nfv 1843 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ ℝ) |
| 42 | | nfra1 2941 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥 |
| 43 | 41, 42 | nfan 1828 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) |
| 44 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛 𝑦 ≤ 𝑥 |
| 45 | | rspa 2930 |
. . . . . . . . . . . . . 14
⊢
((∀𝑛 ∈
𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥 ∧ 𝑛 ∈ 𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) |
| 46 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢
((Σ𝑘 ∈
(𝑀...𝑛)𝐵 ≤ 𝑥 ∧ 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) |
| 47 | | simpl 473 |
. . . . . . . . . . . . . . . 16
⊢
((Σ𝑘 ∈
(𝑀...𝑛)𝐵 ≤ 𝑥 ∧ 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) |
| 48 | 46, 47 | eqbrtrd 4675 |
. . . . . . . . . . . . . . 15
⊢
((Σ𝑘 ∈
(𝑀...𝑛)𝐵 ≤ 𝑥 ∧ 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → 𝑦 ≤ 𝑥) |
| 49 | 48 | ex 450 |
. . . . . . . . . . . . . 14
⊢
(Σ𝑘 ∈
(𝑀...𝑛)𝐵 ≤ 𝑥 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → 𝑦 ≤ 𝑥)) |
| 50 | 45, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢
((∀𝑛 ∈
𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥 ∧ 𝑛 ∈ 𝑍) → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → 𝑦 ≤ 𝑥)) |
| 51 | 50 | ex 450 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥 → (𝑛 ∈ 𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → 𝑦 ≤ 𝑥))) |
| 52 | 51 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) → (𝑛 ∈ 𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → 𝑦 ≤ 𝑥))) |
| 53 | 43, 44, 52 | rexlimd 3026 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) → (∃𝑛 ∈ 𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → 𝑦 ≤ 𝑥)) |
| 54 | 53 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → (∃𝑛 ∈ 𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → 𝑦 ≤ 𝑥)) |
| 55 | 40, 54 | mpd 15 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → 𝑦 ≤ 𝑥) |
| 56 | 55 | ralrimiva 2966 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) → ∀𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ≤ 𝑥) |
| 57 | 56 | ex 450 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥 → ∀𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ≤ 𝑥)) |
| 58 | 57 | ex 450 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ → (∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥 → ∀𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ≤ 𝑥))) |
| 59 | 35, 58 | reximdai 3012 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ≤ 𝑥)) |
| 60 | 34, 59 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ≤ 𝑥) |
| 61 | | supxrre 12157 |
. . 3
⊢ ((ran
(𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ ∧ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ≤ 𝑥) → sup(ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) = sup(ran
(𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < )) |
| 62 | 19, 33, 60, 61 | syl3anc 1326 |
. 2
⊢ (𝜑 → sup(ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) = sup(ran
(𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < )) |
| 63 | 5, 62 | eqtrd 2656 |
1
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = sup(ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < )) |