HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mayete3i Structured version   Visualization version   GIF version

Theorem mayete3i 28587
Description: Mayet's equation E3. Part of Theorem 4.1 of [Mayet3] p. 1223. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mayete3.a 𝐴C
mayete3.b 𝐵C
mayete3.c 𝐶C
mayete3.d 𝐷C
mayete3.f 𝐹C
mayete3.g 𝐺C
mayete3.ac 𝐴 ⊆ (⊥‘𝐶)
mayete3.af 𝐴 ⊆ (⊥‘𝐹)
mayete3.cf 𝐶 ⊆ (⊥‘𝐹)
mayete3.ab 𝐴 ⊆ (⊥‘𝐵)
mayete3.cd 𝐶 ⊆ (⊥‘𝐷)
mayete3.fg 𝐹 ⊆ (⊥‘𝐺)
mayete3.x 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
mayete3.y 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
mayete3.z 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
Assertion
Ref Expression
mayete3i (𝑋𝑌) ⊆ 𝑍

Proof of Theorem mayete3i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3796 . . . . . . . 8 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑋𝑥𝑌))
2 mayete3.a . . . . . . . . . . . . 13 𝐴C
3 mayete3.c . . . . . . . . . . . . 13 𝐶C
42, 3chjcli 28316 . . . . . . . . . . . 12 (𝐴 𝐶) ∈ C
5 mayete3.f . . . . . . . . . . . 12 𝐹C
64, 5chjcli 28316 . . . . . . . . . . 11 ((𝐴 𝐶) ∨ 𝐹) ∈ C
76cheli 28089 . . . . . . . . . 10 (𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹) → 𝑥 ∈ ℋ)
8 mayete3.x . . . . . . . . . 10 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
97, 8eleq2s 2719 . . . . . . . . 9 (𝑥𝑋𝑥 ∈ ℋ)
109adantr 481 . . . . . . . 8 ((𝑥𝑋𝑥𝑌) → 𝑥 ∈ ℋ)
111, 10sylbi 207 . . . . . . 7 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ ℋ)
12 ax-hvmulid 27863 . . . . . . . 8 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
13 2cn 11091 . . . . . . . . . . 11 2 ∈ ℂ
14 2ne0 11113 . . . . . . . . . . 11 2 ≠ 0
15 recid2 10700 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 2 ≠ 0) → ((1 / 2) · 2) = 1)
1613, 14, 15mp2an 708 . . . . . . . . . 10 ((1 / 2) · 2) = 1
1716oveq1i 6660 . . . . . . . . 9 (((1 / 2) · 2) · 𝑥) = (1 · 𝑥)
18 halfcn 11247 . . . . . . . . . 10 (1 / 2) ∈ ℂ
19 ax-hvmulass 27864 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (((1 / 2) · 2) · 𝑥) = ((1 / 2) · (2 · 𝑥)))
2018, 13, 19mp3an12 1414 . . . . . . . . 9 (𝑥 ∈ ℋ → (((1 / 2) · 2) · 𝑥) = ((1 / 2) · (2 · 𝑥)))
2117, 20syl5eqr 2670 . . . . . . . 8 (𝑥 ∈ ℋ → (1 · 𝑥) = ((1 / 2) · (2 · 𝑥)))
2212, 21eqtr3d 2658 . . . . . . 7 (𝑥 ∈ ℋ → 𝑥 = ((1 / 2) · (2 · 𝑥)))
2311, 22syl 17 . . . . . 6 (𝑥 ∈ (𝑋𝑌) → 𝑥 = ((1 / 2) · (2 · 𝑥)))
24 hv2times 27918 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (2 · 𝑥) = (𝑥 + 𝑥))
2524oveq1d 6665 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((2 · 𝑥) + 𝑥) = ((𝑥 + 𝑥) + 𝑥))
2611, 25syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → ((2 · 𝑥) + 𝑥) = ((𝑥 + 𝑥) + 𝑥))
27 inss2 3834 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ 𝑌
2827sseli 3599 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋𝑌) → 𝑥𝑌)
29 mayete3.y . . . . . . . . . . . . . . 15 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
3029elin2 3801 . . . . . . . . . . . . . 14 (𝑥𝑌 ↔ (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) ∧ 𝑥 ∈ (𝐹 𝐺)))
31 elin 3796 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) ↔ (𝑥 ∈ (𝐴 𝐵) ∧ 𝑥 ∈ (𝐶 𝐷)))
32 mayete3.ab . . . . . . . . . . . . . . . . . . 19 𝐴 ⊆ (⊥‘𝐵)
33 mayete3.b . . . . . . . . . . . . . . . . . . . 20 𝐵C
342, 33pjdsi 28571 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝐴 𝐵) ∧ 𝐴 ⊆ (⊥‘𝐵)) → 𝑥 = (((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)))
3532, 34mpan2 707 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴 𝐵) → 𝑥 = (((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)))
36 mayete3.cd . . . . . . . . . . . . . . . . . . 19 𝐶 ⊆ (⊥‘𝐷)
37 mayete3.d . . . . . . . . . . . . . . . . . . . 20 𝐷C
383, 37pjdsi 28571 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝐶 𝐷) ∧ 𝐶 ⊆ (⊥‘𝐷)) → 𝑥 = (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥)))
3936, 38mpan2 707 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐶 𝐷) → 𝑥 = (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥)))
4035, 39oveqan12d 6669 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝐴 𝐵) ∧ 𝑥 ∈ (𝐶 𝐷)) → (𝑥 + 𝑥) = ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))))
4131, 40sylbi 207 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → (𝑥 + 𝑥) = ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))))
42 inss1 3833 . . . . . . . . . . . . . . . . . 18 ((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ (𝐴 𝐵)
4342sseli 3599 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → 𝑥 ∈ (𝐴 𝐵))
442, 33chjcli 28316 . . . . . . . . . . . . . . . . . 18 (𝐴 𝐵) ∈ C
4544cheli 28089 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴 𝐵) → 𝑥 ∈ ℋ)
462pjhcli 28277 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐴)‘𝑥) ∈ ℋ)
4733pjhcli 28277 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐵)‘𝑥) ∈ ℋ)
483pjhcli 28277 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐶)‘𝑥) ∈ ℋ)
4937pjhcli 28277 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐷)‘𝑥) ∈ ℋ)
50 hvadd4 27893 . . . . . . . . . . . . . . . . . 18 (((((proj𝐴)‘𝑥) ∈ ℋ ∧ ((proj𝐵)‘𝑥) ∈ ℋ) ∧ (((proj𝐶)‘𝑥) ∈ ℋ ∧ ((proj𝐷)‘𝑥) ∈ ℋ)) → ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
5146, 47, 48, 49, 50syl22anc 1327 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℋ → ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
5243, 45, 513syl 18 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
5341, 52eqtrd 2656 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → (𝑥 + 𝑥) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
54 mayete3.fg . . . . . . . . . . . . . . . 16 𝐹 ⊆ (⊥‘𝐺)
55 mayete3.g . . . . . . . . . . . . . . . . 17 𝐺C
565, 55pjdsi 28571 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝐹 𝐺) ∧ 𝐹 ⊆ (⊥‘𝐺)) → 𝑥 = (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥)))
5754, 56mpan2 707 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐹 𝐺) → 𝑥 = (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥)))
5853, 57oveqan12d 6669 . . . . . . . . . . . . . 14 ((𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) ∧ 𝑥 ∈ (𝐹 𝐺)) → ((𝑥 + 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))))
5930, 58sylbi 207 . . . . . . . . . . . . 13 (𝑥𝑌 → ((𝑥 + 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))))
6028, 59syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → ((𝑥 + 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))))
61 hvaddcl 27869 . . . . . . . . . . . . . . 15 ((((proj𝐴)‘𝑥) ∈ ℋ ∧ ((proj𝐶)‘𝑥) ∈ ℋ) → (((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ)
6246, 48, 61syl2anc 693 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ)
63 hvaddcl 27869 . . . . . . . . . . . . . . 15 ((((proj𝐵)‘𝑥) ∈ ℋ ∧ ((proj𝐷)‘𝑥) ∈ ℋ) → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ)
6447, 49, 63syl2anc 693 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ)
655pjhcli 28277 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → ((proj𝐹)‘𝑥) ∈ ℋ)
6655pjhcli 28277 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → ((proj𝐺)‘𝑥) ∈ ℋ)
67 hvadd4 27893 . . . . . . . . . . . . . 14 ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ ∧ (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ) ∧ (((proj𝐹)‘𝑥) ∈ ℋ ∧ ((proj𝐺)‘𝑥) ∈ ℋ)) → (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
6862, 64, 65, 66, 67syl22anc 1327 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
6911, 68syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
7026, 60, 693eqtrd 2660 . . . . . . . . . . 11 (𝑥 ∈ (𝑋𝑌) → ((2 · 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
71 inss1 3833 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ 𝑋
7271sseli 3599 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋𝑌) → 𝑥𝑋)
7372, 8syl6eleq 2711 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹))
74 mayete3.ac . . . . . . . . . . . 12 𝐴 ⊆ (⊥‘𝐶)
75 mayete3.af . . . . . . . . . . . . 13 𝐴 ⊆ (⊥‘𝐹)
76 mayete3.cf . . . . . . . . . . . . 13 𝐶 ⊆ (⊥‘𝐹)
772, 3, 5pjds3i 28572 . . . . . . . . . . . . 13 (((𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹) ∧ 𝐴 ⊆ (⊥‘𝐶)) ∧ (𝐴 ⊆ (⊥‘𝐹) ∧ 𝐶 ⊆ (⊥‘𝐹))) → 𝑥 = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)))
7875, 76, 77mpanr12 721 . . . . . . . . . . . 12 ((𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹) ∧ 𝐴 ⊆ (⊥‘𝐶)) → 𝑥 = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)))
7973, 74, 78sylancl 694 . . . . . . . . . . 11 (𝑥 ∈ (𝑋𝑌) → 𝑥 = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)))
8070, 79oveq12d 6668 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) → (((2 · 𝑥) + 𝑥) − 𝑥) = ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))))
81 hvmulcl 27870 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (2 · 𝑥) ∈ ℋ)
8213, 81mpan 706 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (2 · 𝑥) ∈ ℋ)
83 hvpncan 27896 . . . . . . . . . . . 12 (((2 · 𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((2 · 𝑥) + 𝑥) − 𝑥) = (2 · 𝑥))
8482, 83mpancom 703 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (((2 · 𝑥) + 𝑥) − 𝑥) = (2 · 𝑥))
8511, 84syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) → (((2 · 𝑥) + 𝑥) − 𝑥) = (2 · 𝑥))
8680, 85eqtr3d 2658 . . . . . . . . 9 (𝑥 ∈ (𝑋𝑌) → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = (2 · 𝑥))
87 hvaddcl 27869 . . . . . . . . . . . 12 (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ ∧ ((proj𝐹)‘𝑥) ∈ ℋ) → ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) ∈ ℋ)
8862, 65, 87syl2anc 693 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) ∈ ℋ)
89 hvaddcl 27869 . . . . . . . . . . . 12 (((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ ∧ ((proj𝐺)‘𝑥) ∈ ℋ) → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ℋ)
9064, 66, 89syl2anc 693 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ℋ)
91 hvpncan2 27897 . . . . . . . . . . 11 ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) ∈ ℋ ∧ ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ℋ) → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9288, 90, 91syl2anc 693 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9311, 92syl 17 . . . . . . . . 9 (𝑥 ∈ (𝑋𝑌) → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9486, 93eqtr3d 2658 . . . . . . . 8 (𝑥 ∈ (𝑋𝑌) → (2 · 𝑥) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9533pjcli 28276 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((proj𝐵)‘𝑥) ∈ 𝐵)
9637pjcli 28276 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((proj𝐷)‘𝑥) ∈ 𝐷)
9733chshii 28084 . . . . . . . . . . . 12 𝐵S
9837chshii 28084 . . . . . . . . . . . 12 𝐷S
9997, 98shsvai 28223 . . . . . . . . . . 11 ((((proj𝐵)‘𝑥) ∈ 𝐵 ∧ ((proj𝐷)‘𝑥) ∈ 𝐷) → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ (𝐵 + 𝐷))
10095, 96, 99syl2anc 693 . . . . . . . . . 10 (𝑥 ∈ ℋ → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ (𝐵 + 𝐷))
10155pjcli 28276 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((proj𝐺)‘𝑥) ∈ 𝐺)
10297, 98shscli 28176 . . . . . . . . . . 11 (𝐵 + 𝐷) ∈ S
10355chshii 28084 . . . . . . . . . . 11 𝐺S
104102, 103shsvai 28223 . . . . . . . . . 10 (((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ (𝐵 + 𝐷) ∧ ((proj𝐺)‘𝑥) ∈ 𝐺) → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
105100, 101, 104syl2anc 693 . . . . . . . . 9 (𝑥 ∈ ℋ → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
10611, 105syl 17 . . . . . . . 8 (𝑥 ∈ (𝑋𝑌) → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
10794, 106eqeltrd 2701 . . . . . . 7 (𝑥 ∈ (𝑋𝑌) → (2 · 𝑥) ∈ ((𝐵 + 𝐷) + 𝐺))
108102, 103shscli 28176 . . . . . . . 8 ((𝐵 + 𝐷) + 𝐺) ∈ S
109 shmulcl 28075 . . . . . . . 8 ((((𝐵 + 𝐷) + 𝐺) ∈ S ∧ (1 / 2) ∈ ℂ ∧ (2 · 𝑥) ∈ ((𝐵 + 𝐷) + 𝐺)) → ((1 / 2) · (2 · 𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
110108, 18, 109mp3an12 1414 . . . . . . 7 ((2 · 𝑥) ∈ ((𝐵 + 𝐷) + 𝐺) → ((1 / 2) · (2 · 𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
111107, 110syl 17 . . . . . 6 (𝑥 ∈ (𝑋𝑌) → ((1 / 2) · (2 · 𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
11223, 111eqeltrd 2701 . . . . 5 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ ((𝐵 + 𝐷) + 𝐺))
113112ssriv 3607 . . . 4 (𝑋𝑌) ⊆ ((𝐵 + 𝐷) + 𝐺)
11433, 37chsleji 28317 . . . . 5 (𝐵 + 𝐷) ⊆ (𝐵 𝐷)
11533, 37chjcli 28316 . . . . . . 7 (𝐵 𝐷) ∈ C
116115chshii 28084 . . . . . 6 (𝐵 𝐷) ∈ S
117102, 116, 103shlessi 28236 . . . . 5 ((𝐵 + 𝐷) ⊆ (𝐵 𝐷) → ((𝐵 + 𝐷) + 𝐺) ⊆ ((𝐵 𝐷) + 𝐺))
118114, 117ax-mp 5 . . . 4 ((𝐵 + 𝐷) + 𝐺) ⊆ ((𝐵 𝐷) + 𝐺)
119113, 118sstri 3612 . . 3 (𝑋𝑌) ⊆ ((𝐵 𝐷) + 𝐺)
120115, 55chsleji 28317 . . 3 ((𝐵 𝐷) + 𝐺) ⊆ ((𝐵 𝐷) ∨ 𝐺)
121119, 120sstri 3612 . 2 (𝑋𝑌) ⊆ ((𝐵 𝐷) ∨ 𝐺)
122 mayete3.z . 2 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
123121, 122sseqtr4i 3638 1 (𝑋𝑌) ⊆ 𝑍
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  wne 2794  cin 3573  wss 3574  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   · cmul 9941   / cdiv 10684  2c2 11070  chil 27776   + cva 27777   · csm 27778   cmv 27782   S csh 27785   C cch 27786  cort 27787   + cph 27788   chj 27790  projcpjh 27794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942  ax-hcompl 28059
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-lm 21033  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cfil 23053  df-cau 23054  df-cmet 23055  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-dip 27556  df-ssp 27577  df-ph 27668  df-cbn 27719  df-hnorm 27825  df-hba 27826  df-hvsub 27828  df-hlim 27829  df-hcau 27830  df-sh 28064  df-ch 28078  df-oc 28109  df-ch0 28110  df-shs 28167  df-chj 28169  df-pjh 28254
This theorem is referenced by:  mayetes3i  28588
  Copyright terms: Public domain W3C validator