MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsn Structured version   Visualization version   GIF version

Theorem fzsn 12383
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzsn (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})

Proof of Theorem fzsn
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfz1eq 12352 . . . 4 (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀)
2 elfz3 12351 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀))
3 eleq1 2689 . . . . 5 (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀)))
42, 3syl5ibrcom 237 . . . 4 (𝑀 ∈ ℤ → (𝑘 = 𝑀𝑘 ∈ (𝑀...𝑀)))
51, 4impbid2 216 . . 3 (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀))
6 velsn 4193 . . 3 (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀)
75, 6syl6bbr 278 . 2 (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀}))
87eqrdv 2620 1 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {csn 4177  (class class class)co 6650  cz 11377  ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  fzsuc  12388  fzpred  12389  fzpr  12396  fzsuc2  12398  fz0sn  12439  fz0sn0fz1  12456  fzosn  12538  seqf1o  12842  hashsng  13159  sumsnf  14473  sumsn  14475  fsum1  14476  fsumm1  14480  fsum1p  14482  prodsn  14692  fprod1  14693  prodsnf  14694  fprod1p  14698  fprodabs  14704  binomfallfac  14772  ef0lem  14809  fprodefsum  14825  phi1  15478  4sqlem19  15667  vdwlem8  15692  strle1  15973  gsumws1  17376  telgsumfzs  18386  srgbinom  18545  pmatcollpw3fi1lem1  20591  pmatcollpw3fi1  20593  imasdsf1olem  22178  voliunlem1  23318  ply1termlem  23959  pntpbnd1  25275  0wlkons1  26982  iuninc  29379  fzspl  29550  esumfzf  30131  ballotlemfc0  30554  ballotlemfcc  30555  plymulx0  30624  signstf0  30645  subfac1  31160  subfacp1lem1  31161  subfacp1lem5  31166  subfacp1lem6  31167  cvmliftlem10  31276  fwddifn0  32271  poimirlem2  33411  poimirlem3  33412  poimirlem4  33413  poimirlem6  33415  poimirlem7  33416  poimirlem13  33422  poimirlem14  33423  poimirlem16  33425  poimirlem17  33426  poimirlem18  33427  poimirlem19  33428  poimirlem20  33429  poimirlem21  33430  poimirlem22  33431  poimirlem26  33435  poimirlem28  33437  poimirlem31  33440  poimirlem32  33441  sdclem1  33539  fdc  33541  trclfvdecomr  38020  k0004val0  38452  sumsnd  39185  fzdifsuc2  39525  dvnmul  40158  stoweidlem17  40234  carageniuncllem1  40735  caratheodorylem1  40740  hoidmvlelem3  40811  fzopredsuc  41333  sbgoldbo  41675  nnsum3primesprm  41678
  Copyright terms: Public domain W3C validator