Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfadd Structured version   Visualization version   GIF version

Theorem smfadd 40973
Description: The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfadd.x 𝑥𝜑
smfadd.s (𝜑𝑆 ∈ SAlg)
smfadd.a (𝜑𝐴𝑉)
smfadd.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfadd.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfadd.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfadd.n (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
Assertion
Ref Expression
smfadd (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 + 𝐷)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfadd
Dummy variables 𝑎 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfadd.x . 2 𝑥𝜑
2 nfv 1843 . 2 𝑎𝜑
3 smfadd.s . 2 (𝜑𝑆 ∈ SAlg)
4 elinel1 3799 . . . . 5 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
54adantl 482 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
61, 5ssdf 39247 . . 3 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
7 eqid 2622 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
8 smfadd.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
91, 7, 8dmmptdf 39417 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109eqcomd 2628 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
11 smfadd.m . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
12 eqid 2622 . . . . 5 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
133, 11, 12smfdmss 40942 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝑆)
1410, 13eqsstrd 3639 . . 3 (𝜑𝐴 𝑆)
156, 14sstrd 3613 . 2 (𝜑 → (𝐴𝐶) ⊆ 𝑆)
165, 8syldan 487 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
17 elinel2 3800 . . . . . . 7 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
1817adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
19 smfadd.d . . . . . 6 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
2018, 19syldan 487 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
2116, 20readdcld 10069 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐵 + 𝐷) ∈ ℝ)
22 eqid 2622 . . . 4 (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 + 𝐷)) = (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 + 𝐷))
231, 21, 22fmptdf 6387 . . 3 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 + 𝐷)):(𝐴𝐶)⟶ℝ)
2423mptex2 6384 . 2 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐵 + 𝐷) ∈ ℝ)
25 nfv 1843 . . . 4 𝑥 𝑎 ∈ ℝ
261, 25nfan 1828 . . 3 𝑥(𝜑𝑎 ∈ ℝ)
273adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
28 smfadd.a . . . 4 (𝜑𝐴𝑉)
2928adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐴𝑉)
308adantlr 751 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
3119adantlr 751 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐶) → 𝐷 ∈ ℝ)
3211adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
33 smfadd.n . . . 4 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
3433adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
35 simpr 477 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
36 oveq2 6658 . . . . . 6 (𝑟 = 𝑞 → (𝑝 + 𝑟) = (𝑝 + 𝑞))
3736breq1d 4663 . . . . 5 (𝑟 = 𝑞 → ((𝑝 + 𝑟) < 𝑎 ↔ (𝑝 + 𝑞) < 𝑎))
3837cbvrabv 3199 . . . 4 {𝑟 ∈ ℚ ∣ (𝑝 + 𝑟) < 𝑎} = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑎}
3938mpteq2i 4741 . . 3 (𝑝 ∈ ℚ ↦ {𝑟 ∈ ℚ ∣ (𝑝 + 𝑟) < 𝑎}) = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑎})
4026, 27, 29, 30, 31, 32, 34, 35, 39smfaddlem2 40972 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑎} ∈ (𝑆t (𝐴𝐶)))
411, 2, 3, 15, 24, 40issmfdmpt 40957 1 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 + 𝐷)) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wnf 1708  wcel 1990  {crab 2916  cin 3573   cuni 4436   class class class wbr 4653  cmpt 4729  dom cdm 5114  cfv 5888  (class class class)co 6650  cr 9935   + caddc 9939   < clt 10074  cq 11788  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-ioo 12179  df-ico 12181  df-rest 16083  df-salg 40529  df-smblfn 40910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator