Proof of Theorem sqrlearg
| Step | Hyp | Ref
| Expression |
| 1 | | 0re 10040 |
. . . . 5
⊢ 0 ∈
ℝ |
| 2 | 1 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 0 ∈ ℝ) |
| 3 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 1) → ¬ 𝐴 ≤ 1) |
| 4 | | 1red 10055 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 1 ∈
ℝ) |
| 5 | | sqrlearg.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 6 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 𝐴 ∈ ℝ) |
| 7 | 4, 6 | ltnled 10184 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 1) → (1 < 𝐴 ↔ ¬ 𝐴 ≤ 1)) |
| 8 | 3, 7 | mpbird 247 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 1 < 𝐴) |
| 9 | | 1red 10055 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 < 𝐴) → 1 ∈ ℝ) |
| 10 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ) |
| 11 | 1 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 1 < 𝐴) → 0 ∈ ℝ) |
| 12 | | 0lt1 10550 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
| 13 | 12 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 1 < 𝐴) → 0 < 1) |
| 14 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 1 < 𝐴) → 1 < 𝐴) |
| 15 | 11, 9, 10, 13, 14 | lttrd 10198 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 1 < 𝐴) → 0 < 𝐴) |
| 16 | 10, 15 | elrpd 11869 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈
ℝ+) |
| 17 | 9, 10, 16, 14 | ltmul2dd 11928 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 1 < 𝐴) → (𝐴 · 1) < (𝐴 · 𝐴)) |
| 18 | 5 | recnd 10068 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 19 | 18 | mulid1d 10057 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| 20 | 19 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 < 𝐴) → (𝐴 · 1) = 𝐴) |
| 21 | 18 | sqvald 13005 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) |
| 22 | 21 | eqcomd 2628 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 · 𝐴) = (𝐴↑2)) |
| 23 | 22 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 < 𝐴) → (𝐴 · 𝐴) = (𝐴↑2)) |
| 24 | 20, 23 | breq12d 4666 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 1 < 𝐴) → ((𝐴 · 1) < (𝐴 · 𝐴) ↔ 𝐴 < (𝐴↑2))) |
| 25 | 17, 24 | mpbid 222 |
. . . . . . . 8
⊢ ((𝜑 ∧ 1 < 𝐴) → 𝐴 < (𝐴↑2)) |
| 26 | 8, 25 | syldan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 1) → 𝐴 < (𝐴↑2)) |
| 27 | 26 | adantlr 751 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴↑2) ≤ 𝐴) ∧ ¬ 𝐴 ≤ 1) → 𝐴 < (𝐴↑2)) |
| 28 | | simpr 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → (𝐴↑2) ≤ 𝐴) |
| 29 | 5 | resqcld 13035 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴↑2) ∈ ℝ) |
| 30 | 29 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → (𝐴↑2) ∈ ℝ) |
| 31 | 5 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 𝐴 ∈ ℝ) |
| 32 | 30, 31 | lenltd 10183 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → ((𝐴↑2) ≤ 𝐴 ↔ ¬ 𝐴 < (𝐴↑2))) |
| 33 | 28, 32 | mpbid 222 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → ¬ 𝐴 < (𝐴↑2)) |
| 34 | 33 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴↑2) ≤ 𝐴) ∧ ¬ 𝐴 ≤ 1) → ¬ 𝐴 < (𝐴↑2)) |
| 35 | 27, 34 | condan 835 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 𝐴 ≤ 1) |
| 36 | | 1red 10055 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 1) → 1 ∈
ℝ) |
| 37 | 35, 36 | syldan 487 |
. . . 4
⊢ ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 1 ∈ ℝ) |
| 38 | 31 | sqge0d 13036 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 0 ≤ (𝐴↑2)) |
| 39 | 2, 30, 31, 38, 28 | letrd 10194 |
. . . 4
⊢ ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 0 ≤ 𝐴) |
| 40 | 2, 37, 31, 39, 35 | eliccd 39726 |
. . 3
⊢ ((𝜑 ∧ (𝐴↑2) ≤ 𝐴) → 𝐴 ∈ (0[,]1)) |
| 41 | 40 | ex 450 |
. 2
⊢ (𝜑 → ((𝐴↑2) ≤ 𝐴 → 𝐴 ∈ (0[,]1))) |
| 42 | | unitssre 12319 |
. . . . . . 7
⊢ (0[,]1)
⊆ ℝ |
| 43 | 42 | sseli 3599 |
. . . . . 6
⊢ (𝐴 ∈ (0[,]1) → 𝐴 ∈
ℝ) |
| 44 | | 1red 10055 |
. . . . . 6
⊢ (𝐴 ∈ (0[,]1) → 1 ∈
ℝ) |
| 45 | | 0xr 10086 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
| 46 | 45 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ (0[,]1) → 0 ∈
ℝ*) |
| 47 | 44 | rexrd 10089 |
. . . . . . 7
⊢ (𝐴 ∈ (0[,]1) → 1 ∈
ℝ*) |
| 48 | | id 22 |
. . . . . . 7
⊢ (𝐴 ∈ (0[,]1) → 𝐴 ∈
(0[,]1)) |
| 49 | 46, 47, 48 | iccgelbd 39770 |
. . . . . 6
⊢ (𝐴 ∈ (0[,]1) → 0 ≤
𝐴) |
| 50 | 46, 47, 48 | iccleubd 39775 |
. . . . . 6
⊢ (𝐴 ∈ (0[,]1) → 𝐴 ≤ 1) |
| 51 | 43, 44, 43, 49, 50 | lemul2ad 10964 |
. . . . 5
⊢ (𝐴 ∈ (0[,]1) → (𝐴 · 𝐴) ≤ (𝐴 · 1)) |
| 52 | 51 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → (𝐴 · 𝐴) ≤ (𝐴 · 1)) |
| 53 | 22 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → (𝐴 · 𝐴) = (𝐴↑2)) |
| 54 | 19 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → (𝐴 · 1) = 𝐴) |
| 55 | 53, 54 | breq12d 4666 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → ((𝐴 · 𝐴) ≤ (𝐴 · 1) ↔ (𝐴↑2) ≤ 𝐴)) |
| 56 | 52, 55 | mpbid 222 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → (𝐴↑2) ≤ 𝐴) |
| 57 | 56 | ex 450 |
. 2
⊢ (𝜑 → (𝐴 ∈ (0[,]1) → (𝐴↑2) ≤ 𝐴)) |
| 58 | 41, 57 | impbid 202 |
1
⊢ (𝜑 → ((𝐴↑2) ≤ 𝐴 ↔ 𝐴 ∈ (0[,]1))) |