Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrlearg Structured version   Visualization version   Unicode version

Theorem sqrlearg 39780
Description: The square compared with its argument. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
sqrlearg.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
sqrlearg  |-  ( ph  ->  ( ( A ^
2 )  <_  A  <->  A  e.  ( 0 [,] 1 ) ) )

Proof of Theorem sqrlearg
StepHypRef Expression
1 0re 10040 . . . . 5  |-  0  e.  RR
21a1i 11 . . . 4  |-  ( (
ph  /\  ( A ^ 2 )  <_  A )  ->  0  e.  RR )
3 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  -.  A  <_  1 )  ->  -.  A  <_  1 )
4 1red 10055 . . . . . . . . . 10  |-  ( (
ph  /\  -.  A  <_  1 )  ->  1  e.  RR )
5 sqrlearg.1 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
65adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  -.  A  <_  1 )  ->  A  e.  RR )
74, 6ltnled 10184 . . . . . . . . 9  |-  ( (
ph  /\  -.  A  <_  1 )  ->  (
1  <  A  <->  -.  A  <_  1 ) )
83, 7mpbird 247 . . . . . . . 8  |-  ( (
ph  /\  -.  A  <_  1 )  ->  1  <  A )
9 1red 10055 . . . . . . . . . 10  |-  ( (
ph  /\  1  <  A )  ->  1  e.  RR )
105adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  1  <  A )  ->  A  e.  RR )
111a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  1  <  A )  ->  0  e.  RR )
12 0lt1 10550 . . . . . . . . . . . . 13  |-  0  <  1
1312a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  1  <  A )  ->  0  <  1 )
14 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  1  <  A )  ->  1  <  A )
1511, 9, 10, 13, 14lttrd 10198 . . . . . . . . . . 11  |-  ( (
ph  /\  1  <  A )  ->  0  <  A )
1610, 15elrpd 11869 . . . . . . . . . 10  |-  ( (
ph  /\  1  <  A )  ->  A  e.  RR+ )
179, 10, 16, 14ltmul2dd 11928 . . . . . . . . 9  |-  ( (
ph  /\  1  <  A )  ->  ( A  x.  1 )  <  ( A  x.  A )
)
185recnd 10068 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CC )
1918mulid1d 10057 . . . . . . . . . . 11  |-  ( ph  ->  ( A  x.  1 )  =  A )
2019adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  1  <  A )  ->  ( A  x.  1 )  =  A )
2118sqvald 13005 . . . . . . . . . . . 12  |-  ( ph  ->  ( A ^ 2 )  =  ( A  x.  A ) )
2221eqcomd 2628 . . . . . . . . . . 11  |-  ( ph  ->  ( A  x.  A
)  =  ( A ^ 2 ) )
2322adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  1  <  A )  ->  ( A  x.  A )  =  ( A ^ 2 ) )
2420, 23breq12d 4666 . . . . . . . . 9  |-  ( (
ph  /\  1  <  A )  ->  ( ( A  x.  1 )  <  ( A  x.  A )  <->  A  <  ( A ^ 2 ) ) )
2517, 24mpbid 222 . . . . . . . 8  |-  ( (
ph  /\  1  <  A )  ->  A  <  ( A ^ 2 ) )
268, 25syldan 487 . . . . . . 7  |-  ( (
ph  /\  -.  A  <_  1 )  ->  A  <  ( A ^ 2 ) )
2726adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  ( A ^ 2 )  <_  A )  /\  -.  A  <_  1 )  ->  A  <  ( A ^
2 ) )
28 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  ( A ^ 2 )  <_  A )  ->  ( A ^ 2 )  <_  A )
295resqcld 13035 . . . . . . . . . 10  |-  ( ph  ->  ( A ^ 2 )  e.  RR )
3029adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( A ^ 2 )  <_  A )  ->  ( A ^ 2 )  e.  RR )
315adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( A ^ 2 )  <_  A )  ->  A  e.  RR )
3230, 31lenltd 10183 . . . . . . . 8  |-  ( (
ph  /\  ( A ^ 2 )  <_  A )  ->  (
( A ^ 2 )  <_  A  <->  -.  A  <  ( A ^ 2 ) ) )
3328, 32mpbid 222 . . . . . . 7  |-  ( (
ph  /\  ( A ^ 2 )  <_  A )  ->  -.  A  <  ( A ^
2 ) )
3433adantr 481 . . . . . 6  |-  ( ( ( ph  /\  ( A ^ 2 )  <_  A )  /\  -.  A  <_  1 )  ->  -.  A  <  ( A ^ 2 ) )
3527, 34condan 835 . . . . 5  |-  ( (
ph  /\  ( A ^ 2 )  <_  A )  ->  A  <_  1 )
36 1red 10055 . . . . 5  |-  ( (
ph  /\  A  <_  1 )  ->  1  e.  RR )
3735, 36syldan 487 . . . 4  |-  ( (
ph  /\  ( A ^ 2 )  <_  A )  ->  1  e.  RR )
3831sqge0d 13036 . . . . 5  |-  ( (
ph  /\  ( A ^ 2 )  <_  A )  ->  0  <_  ( A ^ 2 ) )
392, 30, 31, 38, 28letrd 10194 . . . 4  |-  ( (
ph  /\  ( A ^ 2 )  <_  A )  ->  0  <_  A )
402, 37, 31, 39, 35eliccd 39726 . . 3  |-  ( (
ph  /\  ( A ^ 2 )  <_  A )  ->  A  e.  ( 0 [,] 1
) )
4140ex 450 . 2  |-  ( ph  ->  ( ( A ^
2 )  <_  A  ->  A  e.  ( 0 [,] 1 ) ) )
42 unitssre 12319 . . . . . . 7  |-  ( 0 [,] 1 )  C_  RR
4342sseli 3599 . . . . . 6  |-  ( A  e.  ( 0 [,] 1 )  ->  A  e.  RR )
44 1red 10055 . . . . . 6  |-  ( A  e.  ( 0 [,] 1 )  ->  1  e.  RR )
45 0xr 10086 . . . . . . . 8  |-  0  e.  RR*
4645a1i 11 . . . . . . 7  |-  ( A  e.  ( 0 [,] 1 )  ->  0  e.  RR* )
4744rexrd 10089 . . . . . . 7  |-  ( A  e.  ( 0 [,] 1 )  ->  1  e.  RR* )
48 id 22 . . . . . . 7  |-  ( A  e.  ( 0 [,] 1 )  ->  A  e.  ( 0 [,] 1
) )
4946, 47, 48iccgelbd 39770 . . . . . 6  |-  ( A  e.  ( 0 [,] 1 )  ->  0  <_  A )
5046, 47, 48iccleubd 39775 . . . . . 6  |-  ( A  e.  ( 0 [,] 1 )  ->  A  <_  1 )
5143, 44, 43, 49, 50lemul2ad 10964 . . . . 5  |-  ( A  e.  ( 0 [,] 1 )  ->  ( A  x.  A )  <_  ( A  x.  1 ) )
5251adantl 482 . . . 4  |-  ( (
ph  /\  A  e.  ( 0 [,] 1
) )  ->  ( A  x.  A )  <_  ( A  x.  1 ) )
5322adantr 481 . . . . 5  |-  ( (
ph  /\  A  e.  ( 0 [,] 1
) )  ->  ( A  x.  A )  =  ( A ^
2 ) )
5419adantr 481 . . . . 5  |-  ( (
ph  /\  A  e.  ( 0 [,] 1
) )  ->  ( A  x.  1 )  =  A )
5553, 54breq12d 4666 . . . 4  |-  ( (
ph  /\  A  e.  ( 0 [,] 1
) )  ->  (
( A  x.  A
)  <_  ( A  x.  1 )  <->  ( A ^ 2 )  <_  A ) )
5652, 55mpbid 222 . . 3  |-  ( (
ph  /\  A  e.  ( 0 [,] 1
) )  ->  ( A ^ 2 )  <_  A )
5756ex 450 . 2  |-  ( ph  ->  ( A  e.  ( 0 [,] 1 )  ->  ( A ^
2 )  <_  A
) )
5841, 57impbid 202 1  |-  ( ph  ->  ( ( A ^
2 )  <_  A  <->  A  e.  ( 0 [,] 1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075   2c2 11070   [,]cicc 12178   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-icc 12182  df-seq 12802  df-exp 12861
This theorem is referenced by:  smfmullem1  40998
  Copyright terms: Public domain W3C validator