Proof of Theorem sralem
| Step | Hyp | Ref
| Expression |
| 1 | | srapart.a |
. . . . . 6
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| 2 | 1 | adantl 482 |
. . . . 5
⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| 3 | | srapart.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| 4 | | sraval 19176 |
. . . . . 6
⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg
‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) |
| 5 | 3, 4 | sylan2 491 |
. . . . 5
⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) |
| 6 | 2, 5 | eqtrd 2656 |
. . . 4
⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) |
| 7 | 6 | fveq2d 6195 |
. . 3
⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝐴) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉))) |
| 8 | | sralem.1 |
. . . . . 6
⊢ 𝐸 = Slot 𝑁 |
| 9 | | sralem.2 |
. . . . . 6
⊢ 𝑁 ∈ ℕ |
| 10 | 8, 9 | ndxid 15883 |
. . . . 5
⊢ 𝐸 = Slot (𝐸‘ndx) |
| 11 | | sralem.3 |
. . . . . . 7
⊢ (𝑁 < 5 ∨ 8 < 𝑁) |
| 12 | 9 | nnrei 11029 |
. . . . . . . . . 10
⊢ 𝑁 ∈ ℝ |
| 13 | | 5re 11099 |
. . . . . . . . . 10
⊢ 5 ∈
ℝ |
| 14 | 12, 13 | ltnei 10161 |
. . . . . . . . 9
⊢ (𝑁 < 5 → 5 ≠ 𝑁) |
| 15 | 14 | necomd 2849 |
. . . . . . . 8
⊢ (𝑁 < 5 → 𝑁 ≠ 5) |
| 16 | | 5lt8 11217 |
. . . . . . . . . 10
⊢ 5 <
8 |
| 17 | | 8re 11105 |
. . . . . . . . . . 11
⊢ 8 ∈
ℝ |
| 18 | 13, 17, 12 | lttri 10163 |
. . . . . . . . . 10
⊢ ((5 <
8 ∧ 8 < 𝑁) → 5
< 𝑁) |
| 19 | 16, 18 | mpan 706 |
. . . . . . . . 9
⊢ (8 <
𝑁 → 5 < 𝑁) |
| 20 | 13, 12 | ltnei 10161 |
. . . . . . . . 9
⊢ (5 <
𝑁 → 𝑁 ≠ 5) |
| 21 | 19, 20 | syl 17 |
. . . . . . . 8
⊢ (8 <
𝑁 → 𝑁 ≠ 5) |
| 22 | 15, 21 | jaoi 394 |
. . . . . . 7
⊢ ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 5) |
| 23 | 11, 22 | ax-mp 5 |
. . . . . 6
⊢ 𝑁 ≠ 5 |
| 24 | 8, 9 | ndxarg 15882 |
. . . . . . 7
⊢ (𝐸‘ndx) = 𝑁 |
| 25 | | scandx 16013 |
. . . . . . 7
⊢
(Scalar‘ndx) = 5 |
| 26 | 24, 25 | neeq12i 2860 |
. . . . . 6
⊢ ((𝐸‘ndx) ≠
(Scalar‘ndx) ↔ 𝑁
≠ 5) |
| 27 | 23, 26 | mpbir 221 |
. . . . 5
⊢ (𝐸‘ndx) ≠
(Scalar‘ndx) |
| 28 | 10, 27 | setsnid 15915 |
. . . 4
⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) |
| 29 | | 5lt6 11204 |
. . . . . . . . . . 11
⊢ 5 <
6 |
| 30 | | 6re 11101 |
. . . . . . . . . . . 12
⊢ 6 ∈
ℝ |
| 31 | 12, 13, 30 | lttri 10163 |
. . . . . . . . . . 11
⊢ ((𝑁 < 5 ∧ 5 < 6) →
𝑁 < 6) |
| 32 | 29, 31 | mpan2 707 |
. . . . . . . . . 10
⊢ (𝑁 < 5 → 𝑁 < 6) |
| 33 | 12, 30 | ltnei 10161 |
. . . . . . . . . 10
⊢ (𝑁 < 6 → 6 ≠ 𝑁) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . 9
⊢ (𝑁 < 5 → 6 ≠ 𝑁) |
| 35 | 34 | necomd 2849 |
. . . . . . . 8
⊢ (𝑁 < 5 → 𝑁 ≠ 6) |
| 36 | | 6lt8 11216 |
. . . . . . . . . 10
⊢ 6 <
8 |
| 37 | 30, 17, 12 | lttri 10163 |
. . . . . . . . . 10
⊢ ((6 <
8 ∧ 8 < 𝑁) → 6
< 𝑁) |
| 38 | 36, 37 | mpan 706 |
. . . . . . . . 9
⊢ (8 <
𝑁 → 6 < 𝑁) |
| 39 | 30, 12 | ltnei 10161 |
. . . . . . . . 9
⊢ (6 <
𝑁 → 𝑁 ≠ 6) |
| 40 | 38, 39 | syl 17 |
. . . . . . . 8
⊢ (8 <
𝑁 → 𝑁 ≠ 6) |
| 41 | 35, 40 | jaoi 394 |
. . . . . . 7
⊢ ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 6) |
| 42 | 11, 41 | ax-mp 5 |
. . . . . 6
⊢ 𝑁 ≠ 6 |
| 43 | | vscandx 16015 |
. . . . . . 7
⊢ (
·𝑠 ‘ndx) = 6 |
| 44 | 24, 43 | neeq12i 2860 |
. . . . . 6
⊢ ((𝐸‘ndx) ≠ (
·𝑠 ‘ndx) ↔ 𝑁 ≠ 6) |
| 45 | 42, 44 | mpbir 221 |
. . . . 5
⊢ (𝐸‘ndx) ≠ (
·𝑠 ‘ndx) |
| 46 | 10, 45 | setsnid 15915 |
. . . 4
⊢ (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (𝐸‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉)) |
| 47 | 12, 13, 17 | lttri 10163 |
. . . . . . . . . . 11
⊢ ((𝑁 < 5 ∧ 5 < 8) →
𝑁 < 8) |
| 48 | 16, 47 | mpan2 707 |
. . . . . . . . . 10
⊢ (𝑁 < 5 → 𝑁 < 8) |
| 49 | 12, 17 | ltnei 10161 |
. . . . . . . . . 10
⊢ (𝑁 < 8 → 8 ≠ 𝑁) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . 9
⊢ (𝑁 < 5 → 8 ≠ 𝑁) |
| 51 | 50 | necomd 2849 |
. . . . . . . 8
⊢ (𝑁 < 5 → 𝑁 ≠ 8) |
| 52 | 17, 12 | ltnei 10161 |
. . . . . . . 8
⊢ (8 <
𝑁 → 𝑁 ≠ 8) |
| 53 | 51, 52 | jaoi 394 |
. . . . . . 7
⊢ ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 8) |
| 54 | 11, 53 | ax-mp 5 |
. . . . . 6
⊢ 𝑁 ≠ 8 |
| 55 | | ipndx 16022 |
. . . . . . 7
⊢
(·𝑖‘ndx) = 8 |
| 56 | 24, 55 | neeq12i 2860 |
. . . . . 6
⊢ ((𝐸‘ndx) ≠
(·𝑖‘ndx) ↔ 𝑁 ≠ 8) |
| 57 | 54, 56 | mpbir 221 |
. . . . 5
⊢ (𝐸‘ndx) ≠
(·𝑖‘ndx) |
| 58 | 10, 57 | setsnid 15915 |
. . . 4
⊢ (𝐸‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉)) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) |
| 59 | 28, 46, 58 | 3eqtri 2648 |
. . 3
⊢ (𝐸‘𝑊) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) |
| 60 | 7, 59 | syl6reqr 2675 |
. 2
⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| 61 | 8 | str0 15911 |
. . 3
⊢ ∅ =
(𝐸‘∅) |
| 62 | | fvprc 6185 |
. . . 4
⊢ (¬
𝑊 ∈ V → (𝐸‘𝑊) = ∅) |
| 63 | 62 | adantr 481 |
. . 3
⊢ ((¬
𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = ∅) |
| 64 | | fvprc 6185 |
. . . . . . 7
⊢ (¬
𝑊 ∈ V →
(subringAlg ‘𝑊) =
∅) |
| 65 | 64 | fveq1d 6193 |
. . . . . 6
⊢ (¬
𝑊 ∈ V →
((subringAlg ‘𝑊)‘𝑆) = (∅‘𝑆)) |
| 66 | | 0fv 6227 |
. . . . . 6
⊢
(∅‘𝑆) =
∅ |
| 67 | 65, 66 | syl6eq 2672 |
. . . . 5
⊢ (¬
𝑊 ∈ V →
((subringAlg ‘𝑊)‘𝑆) = ∅) |
| 68 | 1, 67 | sylan9eqr 2678 |
. . . 4
⊢ ((¬
𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
| 69 | 68 | fveq2d 6195 |
. . 3
⊢ ((¬
𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝐴) = (𝐸‘∅)) |
| 70 | 61, 63, 69 | 3eqtr4a 2682 |
. 2
⊢ ((¬
𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| 71 | 60, 70 | pm2.61ian 831 |
1
⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) |