MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralem Structured version   Visualization version   Unicode version

Theorem sralem 19177
Description: Lemma for srabase 19178 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
srapart.s  |-  ( ph  ->  S  C_  ( Base `  W ) )
sralem.1  |-  E  = Slot 
N
sralem.2  |-  N  e.  NN
sralem.3  |-  ( N  <  5  \/  8  <  N )
Assertion
Ref Expression
sralem  |-  ( ph  ->  ( E `  W
)  =  ( E `
 A ) )

Proof of Theorem sralem
StepHypRef Expression
1 srapart.a . . . . . 6  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
21adantl 482 . . . . 5  |-  ( ( W  e.  _V  /\  ph )  ->  A  =  ( (subringAlg  `  W ) `  S ) )
3 srapart.s . . . . . 6  |-  ( ph  ->  S  C_  ( Base `  W ) )
4 sraval 19176 . . . . . 6  |-  ( ( W  e.  _V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
53, 4sylan2 491 . . . . 5  |-  ( ( W  e.  _V  /\  ph )  ->  ( (subringAlg  `  W ) `  S
)  =  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
62, 5eqtrd 2656 . . . 4  |-  ( ( W  e.  _V  /\  ph )  ->  A  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
76fveq2d 6195 . . 3  |-  ( ( W  e.  _V  /\  ph )  ->  ( E `  A )  =  ( E `  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
8 sralem.1 . . . . . 6  |-  E  = Slot 
N
9 sralem.2 . . . . . 6  |-  N  e.  NN
108, 9ndxid 15883 . . . . 5  |-  E  = Slot  ( E `  ndx )
11 sralem.3 . . . . . . 7  |-  ( N  <  5  \/  8  <  N )
129nnrei 11029 . . . . . . . . . 10  |-  N  e.  RR
13 5re 11099 . . . . . . . . . 10  |-  5  e.  RR
1412, 13ltnei 10161 . . . . . . . . 9  |-  ( N  <  5  ->  5  =/=  N )
1514necomd 2849 . . . . . . . 8  |-  ( N  <  5  ->  N  =/=  5 )
16 5lt8 11217 . . . . . . . . . 10  |-  5  <  8
17 8re 11105 . . . . . . . . . . 11  |-  8  e.  RR
1813, 17, 12lttri 10163 . . . . . . . . . 10  |-  ( ( 5  <  8  /\  8  <  N )  ->  5  <  N
)
1916, 18mpan 706 . . . . . . . . 9  |-  ( 8  <  N  ->  5  <  N )
2013, 12ltnei 10161 . . . . . . . . 9  |-  ( 5  <  N  ->  N  =/=  5 )
2119, 20syl 17 . . . . . . . 8  |-  ( 8  <  N  ->  N  =/=  5 )
2215, 21jaoi 394 . . . . . . 7  |-  ( ( N  <  5  \/  8  <  N )  ->  N  =/=  5
)
2311, 22ax-mp 5 . . . . . 6  |-  N  =/=  5
248, 9ndxarg 15882 . . . . . . 7  |-  ( E `
 ndx )  =  N
25 scandx 16013 . . . . . . 7  |-  (Scalar `  ndx )  =  5
2624, 25neeq12i 2860 . . . . . 6  |-  ( ( E `  ndx )  =/=  (Scalar `  ndx )  <->  N  =/=  5 )
2723, 26mpbir 221 . . . . 5  |-  ( E `
 ndx )  =/=  (Scalar `  ndx )
2810, 27setsnid 15915 . . . 4  |-  ( E `
 W )  =  ( E `  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) )
29 5lt6 11204 . . . . . . . . . . 11  |-  5  <  6
30 6re 11101 . . . . . . . . . . . 12  |-  6  e.  RR
3112, 13, 30lttri 10163 . . . . . . . . . . 11  |-  ( ( N  <  5  /\  5  <  6 )  ->  N  <  6
)
3229, 31mpan2 707 . . . . . . . . . 10  |-  ( N  <  5  ->  N  <  6 )
3312, 30ltnei 10161 . . . . . . . . . 10  |-  ( N  <  6  ->  6  =/=  N )
3432, 33syl 17 . . . . . . . . 9  |-  ( N  <  5  ->  6  =/=  N )
3534necomd 2849 . . . . . . . 8  |-  ( N  <  5  ->  N  =/=  6 )
36 6lt8 11216 . . . . . . . . . 10  |-  6  <  8
3730, 17, 12lttri 10163 . . . . . . . . . 10  |-  ( ( 6  <  8  /\  8  <  N )  ->  6  <  N
)
3836, 37mpan 706 . . . . . . . . 9  |-  ( 8  <  N  ->  6  <  N )
3930, 12ltnei 10161 . . . . . . . . 9  |-  ( 6  <  N  ->  N  =/=  6 )
4038, 39syl 17 . . . . . . . 8  |-  ( 8  <  N  ->  N  =/=  6 )
4135, 40jaoi 394 . . . . . . 7  |-  ( ( N  <  5  \/  8  <  N )  ->  N  =/=  6
)
4211, 41ax-mp 5 . . . . . 6  |-  N  =/=  6
43 vscandx 16015 . . . . . . 7  |-  ( .s
`  ndx )  =  6
4424, 43neeq12i 2860 . . . . . 6  |-  ( ( E `  ndx )  =/=  ( .s `  ndx ) 
<->  N  =/=  6 )
4542, 44mpbir 221 . . . . 5  |-  ( E `
 ndx )  =/=  ( .s `  ndx )
4610, 45setsnid 15915 . . . 4  |-  ( E `
 ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. )
)  =  ( E `
 ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
)
4712, 13, 17lttri 10163 . . . . . . . . . . 11  |-  ( ( N  <  5  /\  5  <  8 )  ->  N  <  8
)
4816, 47mpan2 707 . . . . . . . . . 10  |-  ( N  <  5  ->  N  <  8 )
4912, 17ltnei 10161 . . . . . . . . . 10  |-  ( N  <  8  ->  8  =/=  N )
5048, 49syl 17 . . . . . . . . 9  |-  ( N  <  5  ->  8  =/=  N )
5150necomd 2849 . . . . . . . 8  |-  ( N  <  5  ->  N  =/=  8 )
5217, 12ltnei 10161 . . . . . . . 8  |-  ( 8  <  N  ->  N  =/=  8 )
5351, 52jaoi 394 . . . . . . 7  |-  ( ( N  <  5  \/  8  <  N )  ->  N  =/=  8
)
5411, 53ax-mp 5 . . . . . 6  |-  N  =/=  8
55 ipndx 16022 . . . . . . 7  |-  ( .i
`  ndx )  =  8
5624, 55neeq12i 2860 . . . . . 6  |-  ( ( E `  ndx )  =/=  ( .i `  ndx ) 
<->  N  =/=  8 )
5754, 56mpbir 221 . . . . 5  |-  ( E `
 ndx )  =/=  ( .i `  ndx )
5810, 57setsnid 15915 . . . 4  |-  ( E `
 ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
)  =  ( E `
 ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) )
5928, 46, 583eqtri 2648 . . 3  |-  ( E `
 W )  =  ( E `  (
( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
607, 59syl6reqr 2675 . 2  |-  ( ( W  e.  _V  /\  ph )  ->  ( E `  W )  =  ( E `  A ) )
618str0 15911 . . 3  |-  (/)  =  ( E `  (/) )
62 fvprc 6185 . . . 4  |-  ( -.  W  e.  _V  ->  ( E `  W )  =  (/) )
6362adantr 481 . . 3  |-  ( ( -.  W  e.  _V  /\ 
ph )  ->  ( E `  W )  =  (/) )
64 fvprc 6185 . . . . . . 7  |-  ( -.  W  e.  _V  ->  (subringAlg  `  W )  =  (/) )
6564fveq1d 6193 . . . . . 6  |-  ( -.  W  e.  _V  ->  ( (subringAlg  `  W ) `  S )  =  (
(/) `  S )
)
66 0fv 6227 . . . . . 6  |-  ( (/) `  S )  =  (/)
6765, 66syl6eq 2672 . . . . 5  |-  ( -.  W  e.  _V  ->  ( (subringAlg  `  W ) `  S )  =  (/) )
681, 67sylan9eqr 2678 . . . 4  |-  ( ( -.  W  e.  _V  /\ 
ph )  ->  A  =  (/) )
6968fveq2d 6195 . . 3  |-  ( ( -.  W  e.  _V  /\ 
ph )  ->  ( E `  A )  =  ( E `  (/) ) )
7061, 63, 693eqtr4a 2682 . 2  |-  ( ( -.  W  e.  _V  /\ 
ph )  ->  ( E `  W )  =  ( E `  A ) )
7160, 70pm2.61ian 831 1  |-  ( ph  ->  ( E `  W
)  =  ( E `
 A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574   (/)c0 3915   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    < clt 10074   NNcn 11020   5c5 11073   6c6 11074   8c8 11076   ndxcnx 15854   sSet csts 15855  Slot cslot 15856   Basecbs 15857   ↾s cress 15858   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   .icip 15946  subringAlg csra 19168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-sets 15864  df-sca 15957  df-vsca 15958  df-ip 15959  df-sra 19172
This theorem is referenced by:  srabase  19178  sraaddg  19179  sramulr  19180  sratset  19184  srads  19186  cchhllem  25767
  Copyright terms: Public domain W3C validator