Proof of Theorem sralem
| Step | Hyp | Ref
| Expression |
| 1 | | srapart.a |
. . . . . 6
  subringAlg        |
| 2 | 1 | adantl 482 |
. . . . 5
  
 subringAlg        |
| 3 | | srapart.s |
. . . . . 6

      |
| 4 | | sraval 19176 |
. . . . . 6
        subringAlg         sSet  Scalar    ↾s    sSet      
      sSet      
        |
| 5 | 3, 4 | sylan2 491 |
. . . . 5
  
 subringAlg         sSet  Scalar    ↾s    sSet      
      sSet      
        |
| 6 | 2, 5 | eqtrd 2656 |
. . . 4
  
   sSet  Scalar   
↾s    sSet      
      sSet      
        |
| 7 | 6 | fveq2d 6195 |
. . 3
  
          sSet  Scalar    ↾s    sSet      
      sSet      
         |
| 8 | | sralem.1 |
. . . . . 6
Slot  |
| 9 | | sralem.2 |
. . . . . 6
 |
| 10 | 8, 9 | ndxid 15883 |
. . . . 5
Slot      |
| 11 | | sralem.3 |
. . . . . . 7
   |
| 12 | 9 | nnrei 11029 |
. . . . . . . . . 10
 |
| 13 | | 5re 11099 |
. . . . . . . . . 10
 |
| 14 | 12, 13 | ltnei 10161 |
. . . . . . . . 9
   |
| 15 | 14 | necomd 2849 |
. . . . . . . 8
   |
| 16 | | 5lt8 11217 |
. . . . . . . . . 10
 |
| 17 | | 8re 11105 |
. . . . . . . . . . 11
 |
| 18 | 13, 17, 12 | lttri 10163 |
. . . . . . . . . 10
     |
| 19 | 16, 18 | mpan 706 |
. . . . . . . . 9
   |
| 20 | 13, 12 | ltnei 10161 |
. . . . . . . . 9
   |
| 21 | 19, 20 | syl 17 |
. . . . . . . 8
   |
| 22 | 15, 21 | jaoi 394 |
. . . . . . 7
     |
| 23 | 11, 22 | ax-mp 5 |
. . . . . 6
 |
| 24 | 8, 9 | ndxarg 15882 |
. . . . . . 7
     |
| 25 | | scandx 16013 |
. . . . . . 7
Scalar 
 |
| 26 | 24, 25 | neeq12i 2860 |
. . . . . 6
     Scalar 
  |
| 27 | 23, 26 | mpbir 221 |
. . . . 5
    Scalar   |
| 28 | 10, 27 | setsnid 15915 |
. . . 4
        sSet  Scalar  
 ↾s      |
| 29 | | 5lt6 11204 |
. . . . . . . . . . 11
 |
| 30 | | 6re 11101 |
. . . . . . . . . . . 12
 |
| 31 | 12, 13, 30 | lttri 10163 |
. . . . . . . . . . 11
     |
| 32 | 29, 31 | mpan2 707 |
. . . . . . . . . 10
   |
| 33 | 12, 30 | ltnei 10161 |
. . . . . . . . . 10
   |
| 34 | 32, 33 | syl 17 |
. . . . . . . . 9
   |
| 35 | 34 | necomd 2849 |
. . . . . . . 8
   |
| 36 | | 6lt8 11216 |
. . . . . . . . . 10
 |
| 37 | 30, 17, 12 | lttri 10163 |
. . . . . . . . . 10
     |
| 38 | 36, 37 | mpan 706 |
. . . . . . . . 9
   |
| 39 | 30, 12 | ltnei 10161 |
. . . . . . . . 9
   |
| 40 | 38, 39 | syl 17 |
. . . . . . . 8
   |
| 41 | 35, 40 | jaoi 394 |
. . . . . . 7
     |
| 42 | 11, 41 | ax-mp 5 |
. . . . . 6
 |
| 43 | | vscandx 16015 |
. . . . . . 7
     |
| 44 | 24, 43 | neeq12i 2860 |
. . . . . 6
           |
| 45 | 42, 44 | mpbir 221 |
. . . . 5
         |
| 46 | 10, 45 | setsnid 15915 |
. . . 4
    sSet  Scalar    ↾s          sSet  Scalar   
↾s    sSet      
        |
| 47 | 12, 13, 17 | lttri 10163 |
. . . . . . . . . . 11
     |
| 48 | 16, 47 | mpan2 707 |
. . . . . . . . . 10
   |
| 49 | 12, 17 | ltnei 10161 |
. . . . . . . . . 10
   |
| 50 | 48, 49 | syl 17 |
. . . . . . . . 9
   |
| 51 | 50 | necomd 2849 |
. . . . . . . 8
   |
| 52 | 17, 12 | ltnei 10161 |
. . . . . . . 8
   |
| 53 | 51, 52 | jaoi 394 |
. . . . . . 7
     |
| 54 | 11, 53 | ax-mp 5 |
. . . . . 6
 |
| 55 | | ipndx 16022 |
. . . . . . 7
     |
| 56 | 24, 55 | neeq12i 2860 |
. . . . . 6
           |
| 57 | 54, 56 | mpbir 221 |
. . . . 5
         |
| 58 | 10, 57 | setsnid 15915 |
. . . 4
     sSet  Scalar   
↾s    sSet      
             sSet  Scalar  
 ↾s    sSet             sSet               |
| 59 | 28, 46, 58 | 3eqtri 2648 |
. . 3
          sSet  Scalar    ↾s    sSet      
      sSet      
        |
| 60 | 7, 59 | syl6reqr 2675 |
. 2
  
          |
| 61 | 8 | str0 15911 |
. . 3
     |
| 62 | | fvprc 6185 |
. . . 4
       |
| 63 | 62 | adantr 481 |
. . 3
         |
| 64 | | fvprc 6185 |
. . . . . . 7
 subringAlg     |
| 65 | 64 | fveq1d 6193 |
. . . . . 6
  subringAlg            |
| 66 | | 0fv 6227 |
. . . . . 6
     |
| 67 | 65, 66 | syl6eq 2672 |
. . . . 5
  subringAlg        |
| 68 | 1, 67 | sylan9eqr 2678 |
. . . 4
     |
| 69 | 68 | fveq2d 6195 |
. . 3
             |
| 70 | 61, 63, 69 | 3eqtr4a 2682 |
. 2
             |
| 71 | 60, 70 | pm2.61ian 831 |
1
           |