![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cchhllem | Structured version Visualization version GIF version |
Description: Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) |
Ref | Expression |
---|---|
cchhl.c | ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) |
cchhllem.2 | ⊢ 𝐸 = Slot 𝑁 |
cchhllem.3 | ⊢ 𝑁 ∈ ℕ |
cchhllem.4 | ⊢ (𝑁 < 5 ∨ 8 < 𝑁) |
Ref | Expression |
---|---|
cchhllem | ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cchhllem.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | cchhllem.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 15883 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | cchhllem.4 | . . . . 5 ⊢ (𝑁 < 5 ∨ 8 < 𝑁) | |
5 | 5lt8 11217 | . . . . . . . . 9 ⊢ 5 < 8 | |
6 | 2 | nnrei 11029 | . . . . . . . . . 10 ⊢ 𝑁 ∈ ℝ |
7 | 5re 11099 | . . . . . . . . . 10 ⊢ 5 ∈ ℝ | |
8 | 8re 11105 | . . . . . . . . . 10 ⊢ 8 ∈ ℝ | |
9 | 6, 7, 8 | lttri 10163 | . . . . . . . . 9 ⊢ ((𝑁 < 5 ∧ 5 < 8) → 𝑁 < 8) |
10 | 5, 9 | mpan2 707 | . . . . . . . 8 ⊢ (𝑁 < 5 → 𝑁 < 8) |
11 | 6, 8 | ltnei 10161 | . . . . . . . 8 ⊢ (𝑁 < 8 → 8 ≠ 𝑁) |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝑁 < 5 → 8 ≠ 𝑁) |
13 | 12 | necomd 2849 | . . . . . 6 ⊢ (𝑁 < 5 → 𝑁 ≠ 8) |
14 | 8, 6 | ltnei 10161 | . . . . . 6 ⊢ (8 < 𝑁 → 𝑁 ≠ 8) |
15 | 13, 14 | jaoi 394 | . . . . 5 ⊢ ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 8) |
16 | 4, 15 | ax-mp 5 | . . . 4 ⊢ 𝑁 ≠ 8 |
17 | 1, 2 | ndxarg 15882 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
18 | ipndx 16022 | . . . . 5 ⊢ (·𝑖‘ndx) = 8 | |
19 | 17, 18 | neeq12i 2860 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (·𝑖‘ndx) ↔ 𝑁 ≠ 8) |
20 | 16, 19 | mpbir 221 | . . 3 ⊢ (𝐸‘ndx) ≠ (·𝑖‘ndx) |
21 | 3, 20 | setsnid 15915 | . 2 ⊢ (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉)) |
22 | eqidd 2623 | . . . 4 ⊢ (⊤ → ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ)) | |
23 | ax-resscn 9993 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
24 | cnfldbas 19750 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
25 | 23, 24 | sseqtri 3637 | . . . . 5 ⊢ ℝ ⊆ (Base‘ℂfld) |
26 | 25 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ⊆ (Base‘ℂfld)) |
27 | 22, 26, 1, 2, 4 | sralem 19177 | . . 3 ⊢ (⊤ → (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ))) |
28 | 27 | trud 1493 | . 2 ⊢ (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) |
29 | cchhl.c | . . 3 ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) | |
30 | 29 | fveq2i 6194 | . 2 ⊢ (𝐸‘𝐶) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉)) |
31 | 21, 28, 30 | 3eqtr4i 2654 | 1 ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 383 = wceq 1483 ⊤wtru 1484 ∈ wcel 1990 ≠ wne 2794 ⊆ wss 3574 〈cop 4183 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ℂcc 9934 ℝcr 9935 · cmul 9941 < clt 10074 ℕcn 11020 5c5 11073 8c8 11076 ∗ccj 13836 ndxcnx 15854 sSet csts 15855 Slot cslot 15856 Basecbs 15857 ·𝑖cip 15946 subringAlg csra 19168 ℂfldccnfld 19746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-sra 19172 df-cnfld 19747 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |