Proof of Theorem swrdccat3
| Step | Hyp | Ref
| Expression |
| 1 | | simpll 790 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
| 2 | | simplrl 800 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → 𝑀 ∈ (0...𝑁)) |
| 3 | | lencl 13324 |
. . . . . . . . 9
⊢ (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈
ℕ0) |
| 4 | | elfznn0 12433 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) → 𝑁 ∈
ℕ0) |
| 5 | 4 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ (0...(𝐿 + (#‘𝐵))) ∧ (#‘𝐴) ∈ ℕ0) → 𝑁 ∈
ℕ0) |
| 6 | 5 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ (0...(𝐿 + (#‘𝐵))) ∧ (#‘𝐴) ∈ ℕ0) ∧ 𝑁 ≤ 𝐿) → 𝑁 ∈
ℕ0) |
| 7 | | simplr 792 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ (0...(𝐿 + (#‘𝐵))) ∧ (#‘𝐴) ∈ ℕ0) ∧ 𝑁 ≤ 𝐿) → (#‘𝐴) ∈
ℕ0) |
| 8 | | swrdccatin12.l |
. . . . . . . . . . . . . . 15
⊢ 𝐿 = (#‘𝐴) |
| 9 | 8 | breq2i 4661 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ≤ 𝐿 ↔ 𝑁 ≤ (#‘𝐴)) |
| 10 | 9 | biimpi 206 |
. . . . . . . . . . . . 13
⊢ (𝑁 ≤ 𝐿 → 𝑁 ≤ (#‘𝐴)) |
| 11 | 10 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ (0...(𝐿 + (#‘𝐵))) ∧ (#‘𝐴) ∈ ℕ0) ∧ 𝑁 ≤ 𝐿) → 𝑁 ≤ (#‘𝐴)) |
| 12 | | elfz2nn0 12431 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ (0...(#‘𝐴)) ↔ (𝑁 ∈ ℕ0 ∧
(#‘𝐴) ∈
ℕ0 ∧ 𝑁
≤ (#‘𝐴))) |
| 13 | 6, 7, 11, 12 | syl3anbrc 1246 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ (0...(𝐿 + (#‘𝐵))) ∧ (#‘𝐴) ∈ ℕ0) ∧ 𝑁 ≤ 𝐿) → 𝑁 ∈ (0...(#‘𝐴))) |
| 14 | 13 | exp31 630 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) → ((#‘𝐴) ∈ ℕ0 → (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(#‘𝐴))))) |
| 15 | 14 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((#‘𝐴) ∈ ℕ0 → (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(#‘𝐴))))) |
| 16 | 3, 15 | syl5com 31 |
. . . . . . . 8
⊢ (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(#‘𝐴))))) |
| 17 | 16 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(#‘𝐴))))) |
| 18 | 17 | imp 445 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(#‘𝐴)))) |
| 19 | 18 | imp 445 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → 𝑁 ∈ (0...(#‘𝐴))) |
| 20 | 2, 19 | jca 554 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) |
| 21 | | swrdccatin1 13483 |
. . . 4
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐴 substr 〈𝑀, 𝑁〉))) |
| 22 | 1, 20, 21 | sylc 65 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐴 substr 〈𝑀, 𝑁〉)) |
| 23 | | simp1l 1085 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
| 24 | 8 | eleq1i 2692 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ ℕ0
↔ (#‘𝐴) ∈
ℕ0) |
| 25 | | elfz2nn0 12431 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0
∧ 𝑀 ≤ 𝑁)) |
| 26 | | nn0z 11400 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℤ) |
| 27 | 26 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ 𝐿 ∈
ℤ) |
| 28 | | nn0z 11400 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 29 | 28 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → 𝑁 ∈
ℤ) |
| 30 | 29 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ 𝑁 ∈
ℤ) |
| 31 | | nn0z 11400 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℤ) |
| 32 | 31 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → 𝑀 ∈
ℤ) |
| 33 | 32 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ 𝑀 ∈
ℤ) |
| 34 | 27, 30, 33 | 3jca 1242 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ (𝐿 ∈ ℤ
∧ 𝑁 ∈ ℤ
∧ 𝑀 ∈
ℤ)) |
| 35 | 34 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
∧ 𝐿 ≤ 𝑀) → (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
| 36 | | simpl3 1066 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ 𝑀 ≤ 𝑁) |
| 37 | 36 | anim1i 592 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
∧ 𝐿 ≤ 𝑀) → (𝑀 ≤ 𝑁 ∧ 𝐿 ≤ 𝑀)) |
| 38 | 37 | ancomd 467 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
∧ 𝐿 ≤ 𝑀) → (𝐿 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁)) |
| 39 | | elfz2 12333 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ (𝐿...𝑁) ↔ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
| 40 | 35, 38, 39 | sylanbrc 698 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
∧ 𝐿 ≤ 𝑀) → 𝑀 ∈ (𝐿...𝑁)) |
| 41 | 40 | exp31 630 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → (𝐿 ∈ ℕ0
→ (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 42 | 25, 41 | sylbi 207 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (0...𝑁) → (𝐿 ∈ ℕ0 → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 43 | 42 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → (𝐿 ∈ ℕ0 → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 44 | 43 | com12 32 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ ℕ0
→ ((𝑀 ∈
(0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 45 | 24, 44 | sylbir 225 |
. . . . . . . . . 10
⊢
((#‘𝐴) ∈
ℕ0 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 46 | 3, 45 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 47 | 46 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 48 | 47 | imp 445 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁))) |
| 49 | 48 | a1d 25 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 50 | 49 | 3imp 1256 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → 𝑀 ∈ (𝐿...𝑁)) |
| 51 | | elfz2nn0 12431 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) |
| 52 | | nn0z 11400 |
. . . . . . . . . . . . . . . . . 18
⊢
((#‘𝐴) ∈
ℕ0 → (#‘𝐴) ∈ ℤ) |
| 53 | 8, 52 | syl5eqel 2705 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝐴) ∈
ℕ0 → 𝐿 ∈ ℤ) |
| 54 | 53 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((#‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿) → 𝐿 ∈ ℤ) |
| 55 | 54 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 + (#‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) ∧ ((#‘𝐴) ∈ ℕ0 ∧ ¬
𝑁 ≤ 𝐿)) → 𝐿 ∈ ℤ) |
| 56 | | nn0z 11400 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 + (#‘𝐵)) ∈ ℕ0 → (𝐿 + (#‘𝐵)) ∈ ℤ) |
| 57 | 56 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 + (#‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) → (𝐿 + (#‘𝐵)) ∈ ℤ) |
| 58 | 57 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 + (#‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) ∧ ((#‘𝐴) ∈ ℕ0 ∧ ¬
𝑁 ≤ 𝐿)) → (𝐿 + (#‘𝐵)) ∈ ℤ) |
| 59 | 28 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 + (#‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) → 𝑁 ∈ ℤ) |
| 60 | 59 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 + (#‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) ∧ ((#‘𝐴) ∈ ℕ0 ∧ ¬
𝑁 ≤ 𝐿)) → 𝑁 ∈ ℤ) |
| 61 | 55, 58, 60 | 3jca 1242 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 + (#‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) ∧ ((#‘𝐴) ∈ ℕ0 ∧ ¬
𝑁 ≤ 𝐿)) → (𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 62 | 8 | eqcomi 2631 |
. . . . . . . . . . . . . . . . . . 19
⊢
(#‘𝐴) = 𝐿 |
| 63 | 62 | eleq1i 2692 |
. . . . . . . . . . . . . . . . . 18
⊢
((#‘𝐴) ∈
ℕ0 ↔ 𝐿 ∈
ℕ0) |
| 64 | | nn0re 11301 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℝ) |
| 65 | | nn0re 11301 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
| 66 | | ltnle 10117 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐿)) |
| 67 | 64, 65, 66 | syl2anr 495 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝐿 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐿)) |
| 68 | 67 | bicomd 213 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (¬ 𝑁 ≤ 𝐿 ↔ 𝐿 < 𝑁)) |
| 69 | | ltle 10126 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁 → 𝐿 ≤ 𝑁)) |
| 70 | 64, 65, 69 | syl2anr 495 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝐿 < 𝑁 → 𝐿 ≤ 𝑁)) |
| 71 | 68, 70 | sylbid 230 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (¬ 𝑁 ≤ 𝐿 → 𝐿 ≤ 𝑁)) |
| 72 | 71 | ex 450 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (𝐿 ∈
ℕ0 → (¬ 𝑁 ≤ 𝐿 → 𝐿 ≤ 𝑁))) |
| 73 | 63, 72 | syl5bi 232 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ ((#‘𝐴) ∈
ℕ0 → (¬ 𝑁 ≤ 𝐿 → 𝐿 ≤ 𝑁))) |
| 74 | 73 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 + (#‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) → ((#‘𝐴) ∈ ℕ0 → (¬
𝑁 ≤ 𝐿 → 𝐿 ≤ 𝑁))) |
| 75 | 74 | imp32 449 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 + (#‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) ∧ ((#‘𝐴) ∈ ℕ0 ∧ ¬
𝑁 ≤ 𝐿)) → 𝐿 ≤ 𝑁) |
| 76 | | simpl3 1066 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 + (#‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) ∧ ((#‘𝐴) ∈ ℕ0 ∧ ¬
𝑁 ≤ 𝐿)) → 𝑁 ≤ (𝐿 + (#‘𝐵))) |
| 77 | 75, 76 | jca 554 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 + (#‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) ∧ ((#‘𝐴) ∈ ℕ0 ∧ ¬
𝑁 ≤ 𝐿)) → (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) |
| 78 | | elfz2 12333 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) ↔ ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵))))) |
| 79 | 61, 77, 78 | sylanbrc 698 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 + (#‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) ∧ ((#‘𝐴) ∈ ℕ0 ∧ ¬
𝑁 ≤ 𝐿)) → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) |
| 80 | 79 | exp32 631 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 + (#‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) → ((#‘𝐴) ∈ ℕ0 → (¬
𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
| 81 | 51, 80 | sylbi 207 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) → ((#‘𝐴) ∈ ℕ0 → (¬
𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
| 82 | 81 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((#‘𝐴) ∈ ℕ0 → (¬
𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
| 83 | 3, 82 | syl5com 31 |
. . . . . . . . 9
⊢ (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
| 84 | 83 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
| 85 | 84 | imp 445 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) |
| 86 | 85 | a1dd 50 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → (𝐿 ≤ 𝑀 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
| 87 | 86 | 3imp 1256 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) |
| 88 | 50, 87 | jca 554 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) |
| 89 | 8 | swrdccatin2 13487 |
. . . 4
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉))) |
| 90 | 23, 88, 89 | sylc 65 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) |
| 91 | | simp1l 1085 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
| 92 | | nn0re 11301 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℝ) |
| 93 | 92 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝑀 ∈ ℝ) |
| 94 | | ltnle 10117 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 ↔ ¬ 𝐿 ≤ 𝑀)) |
| 95 | 93, 64, 94 | syl2anr 495 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 ∈ ℕ0
∧ (𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℕ0)) → (𝑀 < 𝐿 ↔ ¬ 𝐿 ≤ 𝑀)) |
| 96 | 95 | bicomd 213 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℕ0
∧ (𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℕ0)) → (¬ 𝐿 ≤ 𝑀 ↔ 𝑀 < 𝐿)) |
| 97 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ∈
ℕ0) |
| 98 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝑀 < 𝐿) → 𝐿 ∈
ℕ0) |
| 99 | | ltle 10126 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 → 𝑀 ≤ 𝐿)) |
| 100 | 92, 64, 99 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝑀 < 𝐿 → 𝑀 ≤ 𝐿)) |
| 101 | 100 | imp 445 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ≤ 𝐿) |
| 102 | | elfz2nn0 12431 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0
∧ 𝑀 ≤ 𝐿)) |
| 103 | 97, 98, 101, 102 | syl3anbrc 1246 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ∈ (0...𝐿)) |
| 104 | 103 | exp31 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ ℕ0
→ (𝐿 ∈
ℕ0 → (𝑀 < 𝐿 → 𝑀 ∈ (0...𝐿)))) |
| 105 | 104 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿 → 𝑀 ∈ (0...𝐿)))) |
| 106 | 105 | impcom 446 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℕ0
∧ (𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℕ0)) → (𝑀 < 𝐿 → 𝑀 ∈ (0...𝐿))) |
| 107 | 96, 106 | sylbid 230 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ ℕ0
∧ (𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℕ0)) → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿))) |
| 108 | 107 | expcom 451 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐿 ∈ ℕ0 → (¬
𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 109 | 108 | 3adant3 1081 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → (𝐿 ∈ ℕ0
→ (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 110 | 25, 109 | sylbi 207 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (0...𝑁) → (𝐿 ∈ ℕ0 → (¬
𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 111 | 63, 110 | syl5bi 232 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (0...𝑁) → ((#‘𝐴) ∈ ℕ0 → (¬
𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 112 | 111 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((#‘𝐴) ∈ ℕ0 → (¬
𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 113 | 3, 112 | syl5com 31 |
. . . . . . . . 9
⊢ (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 114 | 113 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 115 | 114 | imp 445 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿))) |
| 116 | 115 | a1d 25 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 117 | 116 | 3imp 1256 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → 𝑀 ∈ (0...𝐿)) |
| 118 | 65 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 + (#‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) → 𝑁 ∈ ℝ) |
| 119 | 66 | bicomd 213 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬
𝑁 ≤ 𝐿 ↔ 𝐿 < 𝑁)) |
| 120 | 64, 118, 119 | syl2an 494 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) → (¬ 𝑁 ≤ 𝐿 ↔ 𝐿 < 𝑁)) |
| 121 | 26 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) → 𝐿 ∈ ℤ) |
| 122 | 57 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) → (𝐿 + (#‘𝐵)) ∈ ℤ) |
| 123 | 59 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) → 𝑁 ∈ ℤ) |
| 124 | 121, 122,
123 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) → (𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 125 | 124 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) ∧ 𝐿 < 𝑁) → (𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 126 | 64, 118, 69 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) → (𝐿 < 𝑁 → 𝐿 ≤ 𝑁)) |
| 127 | 126 | imp 445 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝐿 ≤ 𝑁) |
| 128 | | simplr3 1105 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝑁 ≤ (𝐿 + (#‘𝐵))) |
| 129 | 127, 128 | jca 554 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) ∧ 𝐿 < 𝑁) → (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) |
| 130 | 125, 129,
78 | sylanbrc 698 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) |
| 131 | 130 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) → (𝐿 < 𝑁 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) |
| 132 | 120, 131 | sylbid 230 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵)))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) |
| 133 | 132 | ex 450 |
. . . . . . . . . . . . . 14
⊢ (𝐿 ∈ ℕ0
→ ((𝑁 ∈
ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
| 134 | 63, 133 | sylbi 207 |
. . . . . . . . . . . . 13
⊢
((#‘𝐴) ∈
ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
| 135 | 3, 134 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Word 𝑉 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
| 136 | 135 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (#‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
| 137 | 136 | com12 32 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 + (#‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (#‘𝐵))) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
| 138 | 51, 137 | sylbi 207 |
. . . . . . . . 9
⊢ (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
| 139 | 138 | adantl 482 |
. . . . . . . 8
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
| 140 | 139 | impcom 446 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) |
| 141 | 140 | a1dd 50 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → (¬ 𝐿 ≤ 𝑀 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
| 142 | 141 | 3imp 1256 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) |
| 143 | 117, 142 | jca 554 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) |
| 144 | 8 | swrdccatin12 13491 |
. . . 4
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 substr 〈0, (𝑁 − 𝐿)〉)))) |
| 145 | 91, 143, 144 | sylc 65 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 substr 〈0, (𝑁 − 𝐿)〉))) |
| 146 | 22, 90, 145 | 2if2 4136 |
. 2
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = if(𝑁 ≤ 𝐿, (𝐴 substr 〈𝑀, 𝑁〉), if(𝐿 ≤ 𝑀, (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉), ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 substr 〈0, (𝑁 − 𝐿)〉))))) |
| 147 | 146 | ex 450 |
1
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = if(𝑁 ≤ 𝐿, (𝐴 substr 〈𝑀, 𝑁〉), if(𝐿 ≤ 𝑀, (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉), ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 substr 〈0, (𝑁 − 𝐿)〉)))))) |