MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin1 Structured version   Visualization version   GIF version

Theorem swrdccatin1 13483
Description: The subword of a concatenation of two words within the first of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.)
Assertion
Ref Expression
swrdccatin1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))

Proof of Theorem swrdccatin1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . 7 ((#‘𝐴) = 0 → (0...(#‘𝐴)) = (0...0))
21eleq2d 2687 . . . . . 6 ((#‘𝐴) = 0 → (𝑁 ∈ (0...(#‘𝐴)) ↔ 𝑁 ∈ (0...0)))
3 elfz1eq 12352 . . . . . . 7 (𝑁 ∈ (0...0) → 𝑁 = 0)
4 elfz1eq 12352 . . . . . . . . 9 (𝑀 ∈ (0...0) → 𝑀 = 0)
5 swrd00 13418 . . . . . . . . . . 11 ((𝐴 ++ 𝐵) substr ⟨0, 0⟩) = ∅
6 swrd00 13418 . . . . . . . . . . 11 (𝐴 substr ⟨0, 0⟩) = ∅
75, 6eqtr4i 2647 . . . . . . . . . 10 ((𝐴 ++ 𝐵) substr ⟨0, 0⟩) = (𝐴 substr ⟨0, 0⟩)
8 opeq1 4402 . . . . . . . . . . 11 (𝑀 = 0 → ⟨𝑀, 0⟩ = ⟨0, 0⟩)
98oveq2d 6666 . . . . . . . . . 10 (𝑀 = 0 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = ((𝐴 ++ 𝐵) substr ⟨0, 0⟩))
108oveq2d 6666 . . . . . . . . . 10 (𝑀 = 0 → (𝐴 substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨0, 0⟩))
117, 9, 103eqtr4a 2682 . . . . . . . . 9 (𝑀 = 0 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩))
124, 11syl 17 . . . . . . . 8 (𝑀 ∈ (0...0) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩))
13 oveq2 6658 . . . . . . . . . 10 (𝑁 = 0 → (0...𝑁) = (0...0))
1413eleq2d 2687 . . . . . . . . 9 (𝑁 = 0 → (𝑀 ∈ (0...𝑁) ↔ 𝑀 ∈ (0...0)))
15 opeq2 4403 . . . . . . . . . . 11 (𝑁 = 0 → ⟨𝑀, 𝑁⟩ = ⟨𝑀, 0⟩)
1615oveq2d 6666 . . . . . . . . . 10 (𝑁 = 0 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩))
1715oveq2d 6666 . . . . . . . . . 10 (𝑁 = 0 → (𝐴 substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 0⟩))
1816, 17eqeq12d 2637 . . . . . . . . 9 (𝑁 = 0 → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩) ↔ ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩)))
1914, 18imbi12d 334 . . . . . . . 8 (𝑁 = 0 → ((𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)) ↔ (𝑀 ∈ (0...0) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩))))
2012, 19mpbiri 248 . . . . . . 7 (𝑁 = 0 → (𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
213, 20syl 17 . . . . . 6 (𝑁 ∈ (0...0) → (𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
222, 21syl6bi 243 . . . . 5 ((#‘𝐴) = 0 → (𝑁 ∈ (0...(#‘𝐴)) → (𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))))
2322com23 86 . . . 4 ((#‘𝐴) = 0 → (𝑀 ∈ (0...𝑁) → (𝑁 ∈ (0...(#‘𝐴)) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))))
2423impd 447 . . 3 ((#‘𝐴) = 0 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
2524a1d 25 . 2 ((#‘𝐴) = 0 → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))))
26 ccatcl 13359 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
2726adantl 482 . . . . . . 7 ((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
2827adantr 481 . . . . . 6 (((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
29 simprl 794 . . . . . 6 (((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) → 𝑀 ∈ (0...𝑁))
30 elfzelfzccat 13364 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(#‘𝐴)) → 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))))
3130adantl 482 . . . . . . . . 9 ((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → (𝑁 ∈ (0...(#‘𝐴)) → 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))))
3231com12 32 . . . . . . . 8 (𝑁 ∈ (0...(#‘𝐴)) → ((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))))
3332adantl 482 . . . . . . 7 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))) → ((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))))
3433impcom 446 . . . . . 6 (((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) → 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵))))
35 swrdvalfn 13426 . . . . . 6 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
3628, 29, 34, 35syl3anc 1326 . . . . 5 (((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
37 3anass 1042 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))) ↔ (𝐴 ∈ Word 𝑉 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))))
3837simplbi2 655 . . . . . . . 8 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))))
3938ad2antrl 764 . . . . . . 7 ((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))))
4039imp 445 . . . . . 6 (((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))))
41 swrdvalfn 13426 . . . . . 6 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))) → (𝐴 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
4240, 41syl 17 . . . . 5 (((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) → (𝐴 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
43 simprl 794 . . . . . . . 8 ((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → 𝐴 ∈ Word 𝑉)
4443ad2antrr 762 . . . . . . 7 ((((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝐴 ∈ Word 𝑉)
45 simprr 796 . . . . . . . 8 ((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → 𝐵 ∈ Word 𝑉)
4645ad2antrr 762 . . . . . . 7 ((((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝐵 ∈ Word 𝑉)
47 elfzo0 12508 . . . . . . . . . 10 (𝑘 ∈ (0..^(𝑁𝑀)) ↔ (𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)))
48 elfz2nn0 12431 . . . . . . . . . . . . . 14 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
49 nn0addcl 11328 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) ∈ ℕ0)
5049expcom 451 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0 → (𝑘 ∈ ℕ0 → (𝑘 + 𝑀) ∈ ℕ0))
51503ad2ant1 1082 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑘 ∈ ℕ0 → (𝑘 + 𝑀) ∈ ℕ0))
5248, 51sylbi 207 . . . . . . . . . . . . 13 (𝑀 ∈ (0...𝑁) → (𝑘 ∈ ℕ0 → (𝑘 + 𝑀) ∈ ℕ0))
5352ad2antrl 764 . . . . . . . . . . . 12 (((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) → (𝑘 ∈ ℕ0 → (𝑘 + 𝑀) ∈ ℕ0))
5453com12 32 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) → (𝑘 + 𝑀) ∈ ℕ0))
55543ad2ant1 1082 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) → (𝑘 + 𝑀) ∈ ℕ0))
5647, 55sylbi 207 . . . . . . . . 9 (𝑘 ∈ (0..^(𝑁𝑀)) → (((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) → (𝑘 + 𝑀) ∈ ℕ0))
5756impcom 446 . . . . . . . 8 ((((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝑘 + 𝑀) ∈ ℕ0)
58 lencl 13324 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℕ0)
59 df-ne 2795 . . . . . . . . . . . . 13 ((#‘𝐴) ≠ 0 ↔ ¬ (#‘𝐴) = 0)
60 elnnne0 11306 . . . . . . . . . . . . . 14 ((#‘𝐴) ∈ ℕ ↔ ((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐴) ≠ 0))
6160simplbi2 655 . . . . . . . . . . . . 13 ((#‘𝐴) ∈ ℕ0 → ((#‘𝐴) ≠ 0 → (#‘𝐴) ∈ ℕ))
6259, 61syl5bir 233 . . . . . . . . . . . 12 ((#‘𝐴) ∈ ℕ0 → (¬ (#‘𝐴) = 0 → (#‘𝐴) ∈ ℕ))
6358, 62syl 17 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (¬ (#‘𝐴) = 0 → (#‘𝐴) ∈ ℕ))
6463adantr 481 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (¬ (#‘𝐴) = 0 → (#‘𝐴) ∈ ℕ))
6564impcom 446 . . . . . . . . 9 ((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → (#‘𝐴) ∈ ℕ)
6665ad2antrr 762 . . . . . . . 8 ((((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (#‘𝐴) ∈ ℕ)
67 elfz2nn0 12431 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (0...(#‘𝐴)) ↔ (𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0𝑁 ≤ (#‘𝐴)))
68 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
6968ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → 𝑘 ∈ ℝ)
70 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
7170adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → 𝑀 ∈ ℝ)
7271adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → 𝑀 ∈ ℝ)
73 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
7473ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → 𝑁 ∈ ℝ)
7569, 72, 74ltaddsubd 10627 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → ((𝑘 + 𝑀) < 𝑁𝑘 < (𝑁𝑀)))
76 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 + 𝑀) ∈ ℕ0 → (𝑘 + 𝑀) ∈ ℝ)
7749, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) ∈ ℝ)
7877adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (𝑘 + 𝑀) ∈ ℝ)
79 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((#‘𝐴) ∈ ℕ0 → (#‘𝐴) ∈ ℝ)
8079adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) → (#‘𝐴) ∈ ℝ)
8180adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (#‘𝐴) ∈ ℝ)
82 ltletr 10129 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (#‘𝐴) ∈ ℝ) → (((𝑘 + 𝑀) < 𝑁𝑁 ≤ (#‘𝐴)) → (𝑘 + 𝑀) < (#‘𝐴)))
8378, 74, 81, 82syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (((𝑘 + 𝑀) < 𝑁𝑁 ≤ (#‘𝐴)) → (𝑘 + 𝑀) < (#‘𝐴)))
8483expd 452 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → ((𝑘 + 𝑀) < 𝑁 → (𝑁 ≤ (#‘𝐴) → (𝑘 + 𝑀) < (#‘𝐴))))
8575, 84sylbird 250 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (𝑘 < (𝑁𝑀) → (𝑁 ≤ (#‘𝐴) → (𝑘 + 𝑀) < (#‘𝐴))))
8685ex 450 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) → ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 < (𝑁𝑀) → (𝑁 ≤ (#‘𝐴) → (𝑘 + 𝑀) < (#‘𝐴)))))
8786com24 95 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) → (𝑁 ≤ (#‘𝐴) → (𝑘 < (𝑁𝑀) → ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) < (#‘𝐴)))))
88873impia 1261 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0𝑁 ≤ (#‘𝐴)) → (𝑘 < (𝑁𝑀) → ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) < (#‘𝐴))))
8988com13 88 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 < (𝑁𝑀) → ((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0𝑁 ≤ (#‘𝐴)) → (𝑘 + 𝑀) < (#‘𝐴))))
9089impancom 456 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑘 < (𝑁𝑀)) → (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0𝑁 ≤ (#‘𝐴)) → (𝑘 + 𝑀) < (#‘𝐴))))
91903adant2 1080 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0𝑁 ≤ (#‘𝐴)) → (𝑘 + 𝑀) < (#‘𝐴))))
9291com13 88 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0𝑁 ≤ (#‘𝐴)) → (𝑀 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (#‘𝐴))))
9367, 92sylbi 207 . . . . . . . . . . . . . . 15 (𝑁 ∈ (0...(#‘𝐴)) → (𝑀 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (#‘𝐴))))
9493com12 32 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (𝑁 ∈ (0...(#‘𝐴)) → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (#‘𝐴))))
95943ad2ant1 1082 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑁 ∈ (0...(#‘𝐴)) → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (#‘𝐴))))
9648, 95sylbi 207 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝑁) → (𝑁 ∈ (0...(#‘𝐴)) → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (#‘𝐴))))
9796a1i 11 . . . . . . . . . . 11 ((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → (𝑀 ∈ (0...𝑁) → (𝑁 ∈ (0...(#‘𝐴)) → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (#‘𝐴)))))
9897imp32 449 . . . . . . . . . 10 (((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (#‘𝐴)))
9947, 98syl5bi 232 . . . . . . . . 9 (((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) → (𝑘 ∈ (0..^(𝑁𝑀)) → (𝑘 + 𝑀) < (#‘𝐴)))
10099imp 445 . . . . . . . 8 ((((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝑘 + 𝑀) < (#‘𝐴))
101 elfzo0 12508 . . . . . . . 8 ((𝑘 + 𝑀) ∈ (0..^(#‘𝐴)) ↔ ((𝑘 + 𝑀) ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ ∧ (𝑘 + 𝑀) < (#‘𝐴)))
10257, 66, 100, 101syl3anbrc 1246 . . . . . . 7 ((((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝑘 + 𝑀) ∈ (0..^(#‘𝐴)))
103 ccatval1 13361 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ (0..^(#‘𝐴))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = (𝐴‘(𝑘 + 𝑀)))
10444, 46, 102, 103syl3anc 1326 . . . . . 6 ((((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = (𝐴‘(𝑘 + 𝑀)))
10527ad2antrr 762 . . . . . . . 8 ((((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
10629adantr 481 . . . . . . . 8 ((((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ (0...𝑁))
10734adantr 481 . . . . . . . 8 ((((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵))))
108105, 106, 1073jca 1242 . . . . . . 7 ((((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))))
109 swrdfv 13424 . . . . . . 7 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)))
110108, 109sylancom 701 . . . . . 6 ((((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)))
111 swrdfv 13424 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → ((𝐴 substr ⟨𝑀, 𝑁⟩)‘𝑘) = (𝐴‘(𝑘 + 𝑀)))
11240, 111sylan 488 . . . . . 6 ((((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → ((𝐴 substr ⟨𝑀, 𝑁⟩)‘𝑘) = (𝐴‘(𝑘 + 𝑀)))
113104, 110, 1123eqtr4d 2666 . . . . 5 ((((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 substr ⟨𝑀, 𝑁⟩)‘𝑘))
11436, 42, 113eqfnfvd 6314 . . . 4 (((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))
115114ex 450 . . 3 ((¬ (#‘𝐴) = 0 ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
116115ex 450 . 2 (¬ (#‘𝐴) = 0 → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))))
11725, 116pm2.61i 176 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  c0 3915  cop 4183   class class class wbr 4653   Fn wfn 5883  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303
This theorem is referenced by:  swrdccat3  13492  swrdccatin1d  13499  pfxccat3  41426  pfxccatpfx1  41427
  Copyright terms: Public domain W3C validator