MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat3a Structured version   Visualization version   GIF version

Theorem swrdccat3a 13494
Description: A prefix of a concatenation is either a prefix of the first concatenated word or a concatenation of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by Alexander van der Vekens, 29-May-2018.)
Hypothesis
Ref Expression
swrdccatin12.l 𝐿 = (#‘𝐴)
Assertion
Ref Expression
swrdccat3a ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))

Proof of Theorem swrdccat3a
StepHypRef Expression
1 elfznn0 12433 . . . . . 6 (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) → 𝑁 ∈ ℕ0)
2 0elfz 12436 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
31, 2syl 17 . . . . 5 (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) → 0 ∈ (0...𝑁))
43ancri 575 . . . 4 (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))))
5 swrdccatin12.l . . . . . 6 𝐿 = (#‘𝐴)
65swrdccat3 13492 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), if(𝐿 ≤ 0, (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))))))
76imp 445 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), if(𝐿 ≤ 0, (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
84, 7sylan2 491 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), if(𝐿 ≤ 0, (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
9 iftrue 4092 . . . . 5 (𝑁𝐿 → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = (𝐴 substr ⟨0, 𝑁⟩))
109adantl 482 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ 𝑁𝐿) → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = (𝐴 substr ⟨0, 𝑁⟩))
11 iffalse 4095 . . . . . 6 𝑁𝐿 → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))
12113ad2ant2 1083 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ 𝑁𝐿𝐿 ≤ 0) → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))
13 lencl 13324 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℕ0)
145, 13syl5eqel 2705 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉𝐿 ∈ ℕ0)
15 nn0le0eq0 11321 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 → (𝐿 ≤ 0 ↔ 𝐿 = 0))
1614, 15syl 17 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (𝐿 ≤ 0 ↔ 𝐿 = 0))
1716biimpd 219 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → (𝐿 ≤ 0 → 𝐿 = 0))
1817adantr 481 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 ≤ 0 → 𝐿 = 0))
195eqeq1i 2627 . . . . . . . . . . . . . . . 16 (𝐿 = 0 ↔ (#‘𝐴) = 0)
2019biimpi 206 . . . . . . . . . . . . . . 15 (𝐿 = 0 → (#‘𝐴) = 0)
21 hasheq0 13154 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑉 → ((#‘𝐴) = 0 ↔ 𝐴 = ∅))
2220, 21syl5ib 234 . . . . . . . . . . . . . 14 (𝐴 ∈ Word 𝑉 → (𝐿 = 0 → 𝐴 = ∅))
2322adantr 481 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 = 0 → 𝐴 = ∅))
2423imp 445 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐿 = 0) → 𝐴 = ∅)
25 0m0e0 11130 . . . . . . . . . . . . . . . 16 (0 − 0) = 0
26 oveq2 6658 . . . . . . . . . . . . . . . . 17 (0 = 𝐿 → (0 − 0) = (0 − 𝐿))
2726eqcoms 2630 . . . . . . . . . . . . . . . 16 (𝐿 = 0 → (0 − 0) = (0 − 𝐿))
2825, 27syl5eqr 2670 . . . . . . . . . . . . . . 15 (𝐿 = 0 → 0 = (0 − 𝐿))
2928adantl 482 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐿 = 0) → 0 = (0 − 𝐿))
3029opeq1d 4408 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐿 = 0) → ⟨0, (𝑁𝐿)⟩ = ⟨(0 − 𝐿), (𝑁𝐿)⟩)
3130oveq2d 6666 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐿 = 0) → (𝐵 substr ⟨0, (𝑁𝐿)⟩) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
3224, 31oveq12d 6668 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐿 = 0) → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (∅ ++ (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)))
33 swrdcl 13419 . . . . . . . . . . . . . 14 (𝐵 ∈ Word 𝑉 → (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩) ∈ Word 𝑉)
34 ccatlid 13369 . . . . . . . . . . . . . 14 ((𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩) ∈ Word 𝑉 → (∅ ++ (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
3533, 34syl 17 . . . . . . . . . . . . 13 (𝐵 ∈ Word 𝑉 → (∅ ++ (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
3635adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (∅ ++ (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
3736adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐿 = 0) → (∅ ++ (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
3832, 37eqtrd 2656 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐿 = 0) → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
3938ex 450 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 = 0 → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)))
4018, 39syld 47 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 ≤ 0 → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)))
4140adantr 481 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → (𝐿 ≤ 0 → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)))
4241imp 445 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ 𝐿 ≤ 0) → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
43423adant2 1080 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ 𝑁𝐿𝐿 ≤ 0) → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
4412, 43eqtrd 2656 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ 𝑁𝐿𝐿 ≤ 0) → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
45113ad2ant2 1083 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿 ≤ 0) → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))
465opeq2i 4406 . . . . . . . . . . 11 ⟨0, 𝐿⟩ = ⟨0, (#‘𝐴)⟩
4746oveq2i 6661 . . . . . . . . . 10 (𝐴 substr ⟨0, 𝐿⟩) = (𝐴 substr ⟨0, (#‘𝐴)⟩)
48 swrdid 13428 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨0, (#‘𝐴)⟩) = 𝐴)
4947, 48syl5req 2669 . . . . . . . . 9 (𝐴 ∈ Word 𝑉𝐴 = (𝐴 substr ⟨0, 𝐿⟩))
5049adantr 481 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐴 = (𝐴 substr ⟨0, 𝐿⟩))
5150adantr 481 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → 𝐴 = (𝐴 substr ⟨0, 𝐿⟩))
52513ad2ant1 1082 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿 ≤ 0) → 𝐴 = (𝐴 substr ⟨0, 𝐿⟩))
5352oveq1d 6665 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿 ≤ 0) → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))
5445, 53eqtrd 2656 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿 ≤ 0) → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))
5510, 44, 542if2 4136 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), if(𝐿 ≤ 0, (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
568, 55eqtr4d 2659 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))))
5756ex 450 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  c0 3915  ifcif 4086  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  0cc0 9936   + caddc 9939  cle 10075  cmin 10266  0cn0 11292  ...cfz 12326  #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303
This theorem is referenced by:  swrdccatid  13497
  Copyright terms: Public domain W3C validator