MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin1 Structured version   Visualization version   Unicode version

Theorem swrdccatin1 13483
Description: The subword of a concatenation of two words within the first of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.)
Assertion
Ref Expression
swrdccatin1  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( # `
 A ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )

Proof of Theorem swrdccatin1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . 7  |-  ( (
# `  A )  =  0  ->  (
0 ... ( # `  A
) )  =  ( 0 ... 0 ) )
21eleq2d 2687 . . . . . 6  |-  ( (
# `  A )  =  0  ->  ( N  e.  ( 0 ... ( # `  A
) )  <->  N  e.  ( 0 ... 0
) ) )
3 elfz1eq 12352 . . . . . . 7  |-  ( N  e.  ( 0 ... 0 )  ->  N  =  0 )
4 elfz1eq 12352 . . . . . . . . 9  |-  ( M  e.  ( 0 ... 0 )  ->  M  =  0 )
5 swrd00 13418 . . . . . . . . . . 11  |-  ( ( A ++  B ) substr  <. 0 ,  0 >. )  =  (/)
6 swrd00 13418 . . . . . . . . . . 11  |-  ( A substr  <. 0 ,  0 >.
)  =  (/)
75, 6eqtr4i 2647 . . . . . . . . . 10  |-  ( ( A ++  B ) substr  <. 0 ,  0 >. )  =  ( A substr  <. 0 ,  0 >. )
8 opeq1 4402 . . . . . . . . . . 11  |-  ( M  =  0  ->  <. M , 
0 >.  =  <. 0 ,  0 >. )
98oveq2d 6666 . . . . . . . . . 10  |-  ( M  =  0  ->  (
( A ++  B ) substr  <. M ,  0 >.
)  =  ( ( A ++  B ) substr  <. 0 ,  0 >. ) )
108oveq2d 6666 . . . . . . . . . 10  |-  ( M  =  0  ->  ( A substr  <. M ,  0
>. )  =  ( A substr  <. 0 ,  0
>. ) )
117, 9, 103eqtr4a 2682 . . . . . . . . 9  |-  ( M  =  0  ->  (
( A ++  B ) substr  <. M ,  0 >.
)  =  ( A substr  <. M ,  0 >.
) )
124, 11syl 17 . . . . . . . 8  |-  ( M  e.  ( 0 ... 0 )  ->  (
( A ++  B ) substr  <. M ,  0 >.
)  =  ( A substr  <. M ,  0 >.
) )
13 oveq2 6658 . . . . . . . . . 10  |-  ( N  =  0  ->  (
0 ... N )  =  ( 0 ... 0
) )
1413eleq2d 2687 . . . . . . . . 9  |-  ( N  =  0  ->  ( M  e.  ( 0 ... N )  <->  M  e.  ( 0 ... 0
) ) )
15 opeq2 4403 . . . . . . . . . . 11  |-  ( N  =  0  ->  <. M ,  N >.  =  <. M , 
0 >. )
1615oveq2d 6666 . . . . . . . . . 10  |-  ( N  =  0  ->  (
( A ++  B ) substr  <. M ,  N >. )  =  ( ( A ++  B ) substr  <. M , 
0 >. ) )
1715oveq2d 6666 . . . . . . . . . 10  |-  ( N  =  0  ->  ( A substr  <. M ,  N >. )  =  ( A substr  <. M ,  0 >.
) )
1816, 17eqeq12d 2637 . . . . . . . . 9  |-  ( N  =  0  ->  (
( ( A ++  B
) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. )  <-> 
( ( A ++  B
) substr  <. M ,  0
>. )  =  ( A substr  <. M ,  0
>. ) ) )
1914, 18imbi12d 334 . . . . . . . 8  |-  ( N  =  0  ->  (
( M  e.  ( 0 ... N )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) )  <->  ( M  e.  ( 0 ... 0
)  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( A substr  <. M ,  0
>. ) ) ) )
2012, 19mpbiri 248 . . . . . . 7  |-  ( N  =  0  ->  ( M  e.  ( 0 ... N )  -> 
( ( A ++  B
) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
213, 20syl 17 . . . . . 6  |-  ( N  e.  ( 0 ... 0 )  ->  ( M  e.  ( 0 ... N )  -> 
( ( A ++  B
) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
222, 21syl6bi 243 . . . . 5  |-  ( (
# `  A )  =  0  ->  ( N  e.  ( 0 ... ( # `  A
) )  ->  ( M  e.  ( 0 ... N )  -> 
( ( A ++  B
) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) ) )
2322com23 86 . . . 4  |-  ( (
# `  A )  =  0  ->  ( M  e.  ( 0 ... N )  -> 
( N  e.  ( 0 ... ( # `  A ) )  -> 
( ( A ++  B
) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) ) )
2423impd 447 . . 3  |-  ( (
# `  A )  =  0  ->  (
( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
2524a1d 25 . 2  |-  ( (
# `  A )  =  0  ->  (
( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `
 A ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) ) )
26 ccatcl 13359 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A ++  B )  e. Word  V )
2726adantl 482 . . . . . . 7  |-  ( ( -.  ( # `  A
)  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  ->  ( A ++  B )  e. Word  V
)
2827adantr 481 . . . . . 6  |-  ( ( ( -.  ( # `  A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V
) )  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  ->  ( A ++  B
)  e. Word  V )
29 simprl 794 . . . . . 6  |-  ( ( ( -.  ( # `  A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V
) )  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  ->  M  e.  ( 0 ... N ) )
30 elfzelfzccat 13364 . . . . . . . . . 10  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( N  e.  ( 0 ... ( # `  A ) )  ->  N  e.  ( 0 ... ( # `  ( A ++  B ) ) ) ) )
3130adantl 482 . . . . . . . . 9  |-  ( ( -.  ( # `  A
)  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  ->  ( N  e.  ( 0 ... ( # `
 A ) )  ->  N  e.  ( 0 ... ( # `  ( A ++  B ) ) ) ) )
3231com12 32 . . . . . . . 8  |-  ( N  e.  ( 0 ... ( # `  A
) )  ->  (
( -.  ( # `  A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V
) )  ->  N  e.  ( 0 ... ( # `
 ( A ++  B
) ) ) ) )
3332adantl 482 . . . . . . 7  |-  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) )  -> 
( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  ->  N  e.  ( 0 ... ( # `  ( A ++  B ) ) ) ) )
3433impcom 446 . . . . . 6  |-  ( ( ( -.  ( # `  A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V
) )  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  ->  N  e.  ( 0 ... ( # `  ( A ++  B ) ) ) )
35 swrdvalfn 13426 . . . . . 6  |-  ( ( ( A ++  B )  e. Word  V  /\  M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( # `
 ( A ++  B
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  Fn  (
0..^ ( N  -  M ) ) )
3628, 29, 34, 35syl3anc 1326 . . . . 5  |-  ( ( ( -.  ( # `  A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V
) )  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  Fn  (
0..^ ( N  -  M ) ) )
37 3anass 1042 . . . . . . . . 9  |-  ( ( A  e. Word  V  /\  M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) )  <->  ( A  e. Word  V  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `
 A ) ) ) ) )
3837simplbi2 655 . . . . . . . 8  |-  ( A  e. Word  V  ->  (
( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A ) ) )  ->  ( A  e. Word  V  /\  M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A ) ) ) ) )
3938ad2antrl 764 . . . . . . 7  |-  ( ( -.  ( # `  A
)  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  ->  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) )  -> 
( A  e. Word  V  /\  M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) ) )
4039imp 445 . . . . . 6  |-  ( ( ( -.  ( # `  A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V
) )  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  ->  ( A  e. Word  V  /\  M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A ) ) ) )
41 swrdvalfn 13426 . . . . . 6  |-  ( ( A  e. Word  V  /\  M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) )  -> 
( A substr  <. M ,  N >. )  Fn  (
0..^ ( N  -  M ) ) )
4240, 41syl 17 . . . . 5  |-  ( ( ( -.  ( # `  A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V
) )  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  ->  ( A substr  <. M ,  N >. )  Fn  (
0..^ ( N  -  M ) ) )
43 simprl 794 . . . . . . . 8  |-  ( ( -.  ( # `  A
)  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  ->  A  e. Word  V )
4443ad2antrr 762 . . . . . . 7  |-  ( ( ( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  A  e. Word  V
)
45 simprr 796 . . . . . . . 8  |-  ( ( -.  ( # `  A
)  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  ->  B  e. Word  V )
4645ad2antrr 762 . . . . . . 7  |-  ( ( ( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  B  e. Word  V
)
47 elfzo0 12508 . . . . . . . . . 10  |-  ( k  e.  ( 0..^ ( N  -  M ) )  <->  ( k  e. 
NN0  /\  ( N  -  M )  e.  NN  /\  k  <  ( N  -  M ) ) )
48 elfz2nn0 12431 . . . . . . . . . . . . . 14  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
49 nn0addcl 11328 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN0  /\  M  e.  NN0 )  -> 
( k  +  M
)  e.  NN0 )
5049expcom 451 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN0  ->  ( k  e.  NN0  ->  ( k  +  M )  e. 
NN0 ) )
51503ad2ant1 1082 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  (
k  e.  NN0  ->  ( k  +  M )  e.  NN0 ) )
5248, 51sylbi 207 . . . . . . . . . . . . 13  |-  ( M  e.  ( 0 ... N )  ->  (
k  e.  NN0  ->  ( k  +  M )  e.  NN0 ) )
5352ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( ( -.  ( # `  A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V
) )  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  ->  ( k  e. 
NN0  ->  ( k  +  M )  e.  NN0 ) )
5453com12 32 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( ( -.  ( # `  A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V
) )  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  ->  ( k  +  M )  e.  NN0 ) )
55543ad2ant1 1082 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  k  <  ( N  -  M ) )  -> 
( ( ( -.  ( # `  A
)  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `
 A ) ) ) )  ->  (
k  +  M )  e.  NN0 ) )
5647, 55sylbi 207 . . . . . . . . 9  |-  ( k  e.  ( 0..^ ( N  -  M ) )  ->  ( (
( -.  ( # `  A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V
) )  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  ->  ( k  +  M )  e.  NN0 ) )
5756impcom 446 . . . . . . . 8  |-  ( ( ( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( k  +  M )  e.  NN0 )
58 lencl 13324 . . . . . . . . . . . 12  |-  ( A  e. Word  V  ->  ( # `
 A )  e. 
NN0 )
59 df-ne 2795 . . . . . . . . . . . . 13  |-  ( (
# `  A )  =/=  0  <->  -.  ( # `  A
)  =  0 )
60 elnnne0 11306 . . . . . . . . . . . . . 14  |-  ( (
# `  A )  e.  NN  <->  ( ( # `  A )  e.  NN0  /\  ( # `  A
)  =/=  0 ) )
6160simplbi2 655 . . . . . . . . . . . . 13  |-  ( (
# `  A )  e.  NN0  ->  ( ( # `
 A )  =/=  0  ->  ( # `  A
)  e.  NN ) )
6259, 61syl5bir 233 . . . . . . . . . . . 12  |-  ( (
# `  A )  e.  NN0  ->  ( -.  ( # `  A )  =  0  ->  ( # `
 A )  e.  NN ) )
6358, 62syl 17 . . . . . . . . . . 11  |-  ( A  e. Word  V  ->  ( -.  ( # `  A
)  =  0  -> 
( # `  A )  e.  NN ) )
6463adantr 481 . . . . . . . . . 10  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( -.  ( # `  A )  =  0  ->  ( # `  A
)  e.  NN ) )
6564impcom 446 . . . . . . . . 9  |-  ( ( -.  ( # `  A
)  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  ->  ( # `  A
)  e.  NN )
6665ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( # `  A
)  e.  NN )
67 elfz2nn0 12431 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( 0 ... ( # `  A
) )  <->  ( N  e.  NN0  /\  ( # `  A )  e.  NN0  /\  N  <_  ( # `  A
) ) )
68 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( k  e.  NN0  ->  k  e.  RR )
6968ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( N  e.  NN0  /\  ( # `  A
)  e.  NN0 )  /\  ( k  e.  NN0  /\  M  e.  NN0 )
)  ->  k  e.  RR )
70 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( M  e.  NN0  ->  M  e.  RR )
7170adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( k  e.  NN0  /\  M  e.  NN0 )  ->  M  e.  RR )
7271adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( N  e.  NN0  /\  ( # `  A
)  e.  NN0 )  /\  ( k  e.  NN0  /\  M  e.  NN0 )
)  ->  M  e.  RR )
73 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  NN0  ->  N  e.  RR )
7473ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( N  e.  NN0  /\  ( # `  A
)  e.  NN0 )  /\  ( k  e.  NN0  /\  M  e.  NN0 )
)  ->  N  e.  RR )
7569, 72, 74ltaddsubd 10627 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( N  e.  NN0  /\  ( # `  A
)  e.  NN0 )  /\  ( k  e.  NN0  /\  M  e.  NN0 )
)  ->  ( (
k  +  M )  <  N  <->  k  <  ( N  -  M ) ) )
76 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( k  +  M )  e.  NN0  ->  ( k  +  M )  e.  RR )
7749, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( k  e.  NN0  /\  M  e.  NN0 )  -> 
( k  +  M
)  e.  RR )
7877adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( N  e.  NN0  /\  ( # `  A
)  e.  NN0 )  /\  ( k  e.  NN0  /\  M  e.  NN0 )
)  ->  ( k  +  M )  e.  RR )
79 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
# `  A )  e.  NN0  ->  ( # `  A
)  e.  RR )
8079adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( N  e.  NN0  /\  ( # `  A )  e.  NN0 )  -> 
( # `  A )  e.  RR )
8180adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( N  e.  NN0  /\  ( # `  A
)  e.  NN0 )  /\  ( k  e.  NN0  /\  M  e.  NN0 )
)  ->  ( # `  A
)  e.  RR )
82 ltletr 10129 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( k  +  M
)  e.  RR  /\  N  e.  RR  /\  ( # `
 A )  e.  RR )  ->  (
( ( k  +  M )  <  N  /\  N  <_  ( # `  A ) )  -> 
( k  +  M
)  <  ( # `  A
) ) )
8378, 74, 81, 82syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( N  e.  NN0  /\  ( # `  A
)  e.  NN0 )  /\  ( k  e.  NN0  /\  M  e.  NN0 )
)  ->  ( (
( k  +  M
)  <  N  /\  N  <_  ( # `  A
) )  ->  (
k  +  M )  <  ( # `  A
) ) )
8483expd 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( N  e.  NN0  /\  ( # `  A
)  e.  NN0 )  /\  ( k  e.  NN0  /\  M  e.  NN0 )
)  ->  ( (
k  +  M )  <  N  ->  ( N  <_  ( # `  A
)  ->  ( k  +  M )  <  ( # `
 A ) ) ) )
8575, 84sylbird 250 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN0  /\  ( # `  A
)  e.  NN0 )  /\  ( k  e.  NN0  /\  M  e.  NN0 )
)  ->  ( k  <  ( N  -  M
)  ->  ( N  <_  ( # `  A
)  ->  ( k  +  M )  <  ( # `
 A ) ) ) )
8685ex 450 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  NN0  /\  ( # `  A )  e.  NN0 )  -> 
( ( k  e. 
NN0  /\  M  e.  NN0 )  ->  ( k  <  ( N  -  M
)  ->  ( N  <_  ( # `  A
)  ->  ( k  +  M )  <  ( # `
 A ) ) ) ) )
8786com24 95 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  NN0  /\  ( # `  A )  e.  NN0 )  -> 
( N  <_  ( # `
 A )  -> 
( k  <  ( N  -  M )  ->  ( ( k  e. 
NN0  /\  M  e.  NN0 )  ->  ( k  +  M )  <  ( # `
 A ) ) ) ) )
88873impia 1261 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  ( # `  A )  e.  NN0  /\  N  <_ 
( # `  A ) )  ->  ( k  <  ( N  -  M
)  ->  ( (
k  e.  NN0  /\  M  e.  NN0 )  -> 
( k  +  M
)  <  ( # `  A
) ) ) )
8988com13 88 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  NN0  /\  M  e.  NN0 )  -> 
( k  <  ( N  -  M )  ->  ( ( N  e. 
NN0  /\  ( # `  A
)  e.  NN0  /\  N  <_  ( # `  A
) )  ->  (
k  +  M )  <  ( # `  A
) ) ) )
9089impancom 456 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  NN0  /\  k  <  ( N  -  M ) )  -> 
( M  e.  NN0  ->  ( ( N  e. 
NN0  /\  ( # `  A
)  e.  NN0  /\  N  <_  ( # `  A
) )  ->  (
k  +  M )  <  ( # `  A
) ) ) )
91903adant2 1080 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  k  <  ( N  -  M ) )  -> 
( M  e.  NN0  ->  ( ( N  e. 
NN0  /\  ( # `  A
)  e.  NN0  /\  N  <_  ( # `  A
) )  ->  (
k  +  M )  <  ( # `  A
) ) ) )
9291com13 88 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  ( # `  A )  e.  NN0  /\  N  <_ 
( # `  A ) )  ->  ( M  e.  NN0  ->  ( (
k  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  k  <  ( N  -  M ) )  -> 
( k  +  M
)  <  ( # `  A
) ) ) )
9367, 92sylbi 207 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( 0 ... ( # `  A
) )  ->  ( M  e.  NN0  ->  (
( k  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  k  <  ( N  -  M ) )  -> 
( k  +  M
)  <  ( # `  A
) ) ) )
9493com12 32 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  ( N  e.  ( 0 ... ( # `  A
) )  ->  (
( k  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  k  <  ( N  -  M ) )  -> 
( k  +  M
)  <  ( # `  A
) ) ) )
95943ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( N  e.  ( 0 ... ( # `  A
) )  ->  (
( k  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  k  <  ( N  -  M ) )  -> 
( k  +  M
)  <  ( # `  A
) ) ) )
9648, 95sylbi 207 . . . . . . . . . . . 12  |-  ( M  e.  ( 0 ... N )  ->  ( N  e.  ( 0 ... ( # `  A
) )  ->  (
( k  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  k  <  ( N  -  M ) )  -> 
( k  +  M
)  <  ( # `  A
) ) ) )
9796a1i 11 . . . . . . . . . . 11  |-  ( ( -.  ( # `  A
)  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  ->  ( M  e.  ( 0 ... N
)  ->  ( N  e.  ( 0 ... ( # `
 A ) )  ->  ( ( k  e.  NN0  /\  ( N  -  M )  e.  NN  /\  k  < 
( N  -  M
) )  ->  (
k  +  M )  <  ( # `  A
) ) ) ) )
9897imp32 449 . . . . . . . . . 10  |-  ( ( ( -.  ( # `  A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V
) )  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  ->  ( ( k  e.  NN0  /\  ( N  -  M )  e.  NN  /\  k  < 
( N  -  M
) )  ->  (
k  +  M )  <  ( # `  A
) ) )
9947, 98syl5bi 232 . . . . . . . . 9  |-  ( ( ( -.  ( # `  A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V
) )  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  ->  ( k  e.  ( 0..^ ( N  -  M ) )  ->  ( k  +  M )  <  ( # `
 A ) ) )
10099imp 445 . . . . . . . 8  |-  ( ( ( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( k  +  M )  <  ( # `
 A ) )
101 elfzo0 12508 . . . . . . . 8  |-  ( ( k  +  M )  e.  ( 0..^ (
# `  A )
)  <->  ( ( k  +  M )  e. 
NN0  /\  ( # `  A
)  e.  NN  /\  ( k  +  M
)  <  ( # `  A
) ) )
10257, 66, 100, 101syl3anbrc 1246 . . . . . . 7  |-  ( ( ( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( k  +  M )  e.  ( 0..^ ( # `  A
) ) )
103 ccatval1 13361 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  (
k  +  M )  e.  ( 0..^ (
# `  A )
) )  ->  (
( A ++  B ) `
 ( k  +  M ) )  =  ( A `  (
k  +  M ) ) )
10444, 46, 102, 103syl3anc 1326 . . . . . 6  |-  ( ( ( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( ( A ++  B ) `  (
k  +  M ) )  =  ( A `
 ( k  +  M ) ) )
10527ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( A ++  B
)  e. Word  V )
10629adantr 481 . . . . . . . 8  |-  ( ( ( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  M  e.  ( 0 ... N ) )
10734adantr 481 . . . . . . . 8  |-  ( ( ( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  N  e.  ( 0 ... ( # `  ( A ++  B ) ) ) )
108105, 106, 1073jca 1242 . . . . . . 7  |-  ( ( ( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( ( A ++  B )  e. Word  V  /\  M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  ( A ++  B ) ) ) ) )
109 swrdfv 13424 . . . . . . 7  |-  ( ( ( ( A ++  B
)  e. Word  V  /\  M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  ( A ++  B ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( (
( A ++  B ) substr  <. M ,  N >. ) `
 k )  =  ( ( A ++  B
) `  ( k  +  M ) ) )
110108, 109sylancom 701 . . . . . 6  |-  ( ( ( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( ( ( A ++  B ) substr  <. M ,  N >. ) `  k )  =  ( ( A ++  B ) `
 ( k  +  M ) ) )
111 swrdfv 13424 . . . . . . 7  |-  ( ( ( A  e. Word  V  /\  M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) )  /\  k  e.  ( 0..^ ( N  -  M
) ) )  -> 
( ( A substr  <. M ,  N >. ) `  k
)  =  ( A `
 ( k  +  M ) ) )
11240, 111sylan 488 . . . . . 6  |-  ( ( ( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( ( A substr  <. M ,  N >. ) `
 k )  =  ( A `  (
k  +  M ) ) )
113104, 110, 1123eqtr4d 2666 . . . . 5  |-  ( ( ( ( -.  ( # `
 A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  /\  ( M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( ( ( A ++  B ) substr  <. M ,  N >. ) `  k )  =  ( ( A substr  <. M ,  N >. ) `  k
) )
11436, 42, 113eqfnfvd 6314 . . . 4  |-  ( ( ( -.  ( # `  A )  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V
) )  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) )
115114ex 450 . . 3  |-  ( ( -.  ( # `  A
)  =  0  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  ->  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) )  -> 
( ( A ++  B
) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
116115ex 450 . 2  |-  ( -.  ( # `  A
)  =  0  -> 
( ( A  e. Word  V  /\  B  e. Word  V
)  ->  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  A
) ) )  -> 
( ( A ++  B
) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) ) )
11725, 116pm2.61i 176 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( # `
 A ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915   <.cop 4183   class class class wbr 4653    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303
This theorem is referenced by:  swrdccat3  13492  swrdccatin1d  13499  pfxccat3  41426  pfxccatpfx1  41427
  Copyright terms: Public domain W3C validator