![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > telgsum | Structured version Visualization version GIF version |
Description: Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019.) |
Ref | Expression |
---|---|
telgsum.b | ⊢ 𝐵 = (Base‘𝐺) |
telgsum.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
telgsum.m | ⊢ − = (-g‘𝐺) |
telgsum.0 | ⊢ 0 = (0g‘𝐺) |
telgsum.f | ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐵) |
telgsum.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
telgsum.u | ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐴 = 0 )) |
telgsum.c | ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐶) |
telgsum.d | ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷) |
telgsum.e | ⊢ (𝑘 = 0 → 𝐴 = 𝐸) |
Ref | Expression |
---|---|
telgsum | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 − 𝐷))) = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
2 | telgsum.c | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐶) | |
3 | 2 | adantl 482 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐶) |
4 | 1, 3 | csbied 3560 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ⦋𝑖 / 𝑘⦌𝐴 = 𝐶) |
5 | 4 | eqcomd 2628 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐶 = ⦋𝑖 / 𝑘⦌𝐴) |
6 | peano2nn0 11333 | . . . . . . . 8 ⊢ (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0) | |
7 | 6 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℕ0) |
8 | telgsum.d | . . . . . . . 8 ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷) | |
9 | 8 | adantl 482 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐷) |
10 | 7, 9 | csbied 3560 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ⦋(𝑖 + 1) / 𝑘⦌𝐴 = 𝐷) |
11 | 10 | eqcomd 2628 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐷 = ⦋(𝑖 + 1) / 𝑘⦌𝐴) |
12 | 5, 11 | oveq12d 6668 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝐶 − 𝐷) = (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)) |
13 | 12 | mpteq2dva 4744 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝐶 − 𝐷)) = (𝑖 ∈ ℕ0 ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) |
14 | 13 | oveq2d 6666 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 − 𝐷))) = (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)))) |
15 | telgsum.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
16 | telgsum.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
17 | telgsum.m | . . 3 ⊢ − = (-g‘𝐺) | |
18 | telgsum.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
19 | telgsum.f | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐵) | |
20 | telgsum.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
21 | telgsum.u | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐴 = 0 )) | |
22 | 15, 16, 17, 18, 19, 20, 21 | telgsums 18390 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) = ⦋0 / 𝑘⦌𝐴) |
23 | c0ex 10034 | . . . 4 ⊢ 0 ∈ V | |
24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
25 | telgsum.e | . . . 4 ⊢ (𝑘 = 0 → 𝐴 = 𝐸) | |
26 | 25 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑘 = 0) → 𝐴 = 𝐸) |
27 | 24, 26 | csbied 3560 | . 2 ⊢ (𝜑 → ⦋0 / 𝑘⦌𝐴 = 𝐸) |
28 | 14, 22, 27 | 3eqtrd 2660 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 − 𝐷))) = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ⦋csb 3533 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 + caddc 9939 < clt 10074 ℕ0cn0 11292 Basecbs 15857 0gc0g 16100 Σg cgsu 16101 -gcsg 17424 Abelcabl 18194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-0g 16102 df-gsum 16103 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-cntz 17750 df-cmn 18195 df-abl 18196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |