| Step | Hyp | Ref
| Expression |
| 1 | | tgbtwnconn.p |
. . . 4
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | eqid 2622 |
. . . 4
⊢
(dist‘𝐺) =
(dist‘𝐺) |
| 3 | | tgbtwnconn.i |
. . . 4
⊢ 𝐼 = (Itv‘𝐺) |
| 4 | | tgbtwnconn.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 5 | 4 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (#‘𝑃) = 1) → 𝐺 ∈ TarskiG) |
| 6 | | tgbtwnconn.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 7 | 6 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (#‘𝑃) = 1) → 𝐵 ∈ 𝑃) |
| 8 | | tgbtwnconn.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 9 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (#‘𝑃) = 1) → 𝐴 ∈ 𝑃) |
| 10 | | tgbtwnconn.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 11 | 10 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (#‘𝑃) = 1) → 𝐶 ∈ 𝑃) |
| 12 | | simpr 477 |
. . . 4
⊢ ((𝜑 ∧ (#‘𝑃) = 1) → (#‘𝑃) = 1) |
| 13 | 1, 2, 3, 5, 7, 9, 11, 12 | tgldim0itv 25399 |
. . 3
⊢ ((𝜑 ∧ (#‘𝑃) = 1) → 𝐵 ∈ (𝐴𝐼𝐶)) |
| 14 | 13 | orcd 407 |
. 2
⊢ ((𝜑 ∧ (#‘𝑃) = 1) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
| 15 | 4 | ad3antrrr 766 |
. . . 4
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐺 ∈ TarskiG) |
| 16 | | simplr 792 |
. . . 4
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝑝 ∈ 𝑃) |
| 17 | 8 | ad3antrrr 766 |
. . . 4
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ 𝑃) |
| 18 | 6 | ad3antrrr 766 |
. . . 4
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐵 ∈ 𝑃) |
| 19 | 10 | ad3antrrr 766 |
. . . 4
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐶 ∈ 𝑃) |
| 20 | | simprr 796 |
. . . . 5
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ≠ 𝑝) |
| 21 | 20 | necomd 2849 |
. . . 4
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝑝 ≠ 𝐴) |
| 22 | | tgbtwnconn.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 23 | 22 | ad3antrrr 766 |
. . . . . 6
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐷 ∈ 𝑃) |
| 24 | | tgbtwnconn3.1 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
| 25 | 24 | ad3antrrr 766 |
. . . . . 6
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐵 ∈ (𝐴𝐼𝐷)) |
| 26 | | simprl 794 |
. . . . . . 7
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝐷𝐼𝑝)) |
| 27 | 1, 2, 3, 15, 23, 17, 16, 26 | tgbtwncom 25383 |
. . . . . 6
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝑝𝐼𝐷)) |
| 28 | 1, 2, 3, 15, 18, 17, 16, 23, 25, 27 | tgbtwnintr 25388 |
. . . . 5
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝐵𝐼𝑝)) |
| 29 | 1, 2, 3, 15, 18, 17, 16, 28 | tgbtwncom 25383 |
. . . 4
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝑝𝐼𝐵)) |
| 30 | | tgbtwnconn3.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
| 31 | 30 | ad3antrrr 766 |
. . . . . . 7
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐶 ∈ (𝐴𝐼𝐷)) |
| 32 | 1, 2, 3, 15, 17, 19, 23, 31 | tgbtwncom 25383 |
. . . . . 6
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐶 ∈ (𝐷𝐼𝐴)) |
| 33 | 1, 2, 3, 15, 23, 19, 17, 16, 32, 26 | tgbtwnexch3 25389 |
. . . . 5
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝐶𝐼𝑝)) |
| 34 | 1, 2, 3, 15, 19, 17, 16, 33 | tgbtwncom 25383 |
. . . 4
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝑝𝐼𝐶)) |
| 35 | 1, 3, 15, 16, 17, 18, 19, 21, 29, 34 | tgbtwnconn2 25471 |
. . 3
⊢ ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
| 36 | 4 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 𝐺 ∈ TarskiG) |
| 37 | 22 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 𝐷 ∈ 𝑃) |
| 38 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 𝐴 ∈ 𝑃) |
| 39 | | simpr 477 |
. . . 4
⊢ ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 2 ≤ (#‘𝑃)) |
| 40 | 1, 2, 3, 36, 37, 38, 39 | tgbtwndiff 25401 |
. . 3
⊢ ((𝜑 ∧ 2 ≤ (#‘𝑃)) → ∃𝑝 ∈ 𝑃 (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) |
| 41 | 35, 40 | r19.29a 3078 |
. 2
⊢ ((𝜑 ∧ 2 ≤ (#‘𝑃)) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
| 42 | 1, 8 | tgldimor 25397 |
. 2
⊢ (𝜑 → ((#‘𝑃) = 1 ∨ 2 ≤ (#‘𝑃))) |
| 43 | 14, 41, 42 | mpjaodan 827 |
1
⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |