| Step | Hyp | Ref
| Expression |
| 1 | | wrdfin 13323 |
. . 3
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ Fin) |
| 2 | | wrdf 13310 |
. . 3
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) |
| 3 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Fin ∧ 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) → 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) |
| 4 | 3 | adantr 481 |
. . . . . . . 8
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(#‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) |
| 5 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) |
| 6 | 5 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑥 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘𝑥))) |
| 7 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑥 → (𝑃‘𝑘) = (𝑃‘𝑥)) |
| 8 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑥 → (𝑘 + 1) = (𝑥 + 1)) |
| 9 | 8 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑥 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑥 + 1))) |
| 10 | 7, 9 | preq12d 4276 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑥 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
| 11 | 6, 10 | eqeq12d 2637 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑥 → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) |
| 12 | 11 | rspcv 3305 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (0..^(#‘𝐹)) → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) |
| 13 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑦 → (𝐹‘𝑘) = (𝐹‘𝑦)) |
| 14 | 13 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑦 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘𝑦))) |
| 15 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑦 → (𝑃‘𝑘) = (𝑃‘𝑦)) |
| 16 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑦 → (𝑘 + 1) = (𝑦 + 1)) |
| 17 | 16 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑦 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑦 + 1))) |
| 18 | 15, 17 | preq12d 4276 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑦 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) |
| 19 | 14, 18 | eqeq12d 2637 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑦 → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) |
| 20 | 19 | rspcv 3305 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0..^(#‘𝐹)) → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) |
| 21 | 12, 20 | anim12ii 594 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}))) |
| 22 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦))) |
| 23 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
| 24 | 23 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = (𝐼‘(𝐹‘𝑥))) |
| 25 | 24 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = (𝐼‘(𝐹‘𝑥))) |
| 26 | | simpl 473 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦))) |
| 27 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) |
| 28 | 27 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) |
| 29 | 25, 26, 28 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) |
| 30 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃‘𝑥) ∈ V |
| 31 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃‘(𝑥 + 1)) ∈ V |
| 32 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃‘𝑦) ∈ V |
| 33 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃‘(𝑦 + 1)) ∈ V |
| 34 | 30, 31, 32, 33 | preq12b 4382 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))} ↔ (((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)))) |
| 35 | | dff13 6512 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃:(0...(#‘𝐹))–1-1→𝑉 ↔ (𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏))) |
| 36 | | elfzofz 12485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈ (0..^(#‘𝐹)) → 𝑥 ∈ (0...(#‘𝐹))) |
| 37 | | elfzofz 12485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ (0..^(#‘𝐹)) → 𝑦 ∈ (0...(#‘𝐹))) |
| 38 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 = 𝑥 → (𝑃‘𝑎) = (𝑃‘𝑥)) |
| 39 | 38 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = 𝑥 → ((𝑃‘𝑎) = (𝑃‘𝑏) ↔ (𝑃‘𝑥) = (𝑃‘𝑏))) |
| 40 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = 𝑥 → (𝑎 = 𝑏 ↔ 𝑥 = 𝑏)) |
| 41 | 39, 40 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 = 𝑥 → (((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ↔ ((𝑃‘𝑥) = (𝑃‘𝑏) → 𝑥 = 𝑏))) |
| 42 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 = 𝑦 → (𝑃‘𝑏) = (𝑃‘𝑦)) |
| 43 | 42 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑏 = 𝑦 → ((𝑃‘𝑥) = (𝑃‘𝑏) ↔ (𝑃‘𝑥) = (𝑃‘𝑦))) |
| 44 | | eqeq2 2633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑏 = 𝑦 → (𝑥 = 𝑏 ↔ 𝑥 = 𝑦)) |
| 45 | 43, 44 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑏 = 𝑦 → (((𝑃‘𝑥) = (𝑃‘𝑏) → 𝑥 = 𝑏) ↔ ((𝑃‘𝑥) = (𝑃‘𝑦) → 𝑥 = 𝑦))) |
| 46 | 41, 45 | rspc2v 3322 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ (0...(#‘𝐹)) ∧ 𝑦 ∈ (0...(#‘𝐹))) → (∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘𝑥) = (𝑃‘𝑦) → 𝑥 = 𝑦))) |
| 47 | 36, 37, 46 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → (∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘𝑥) = (𝑃‘𝑦) → 𝑥 = 𝑦))) |
| 48 | 47 | a1dd 50 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → (∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑃‘𝑥) = (𝑃‘𝑦) → 𝑥 = 𝑦)))) |
| 49 | 48 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑃‘𝑥) = (𝑃‘𝑦) → (∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → 𝑥 = 𝑦)))) |
| 50 | 49 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) → (∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → 𝑥 = 𝑦)))) |
| 51 | | hashcl 13147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐹 ∈ Fin →
(#‘𝐹) ∈
ℕ0) |
| 52 | 36 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((#‘𝐹) ∈
ℕ0 → (𝑥 ∈ (0..^(#‘𝐹)) → 𝑥 ∈ (0...(#‘𝐹)))) |
| 53 | | fzofzp1 12565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 ∈ (0..^(#‘𝐹)) → (𝑦 + 1) ∈ (0...(#‘𝐹))) |
| 54 | 52, 53 | anim12d1 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((#‘𝐹) ∈
ℕ0 → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → (𝑥 ∈ (0...(#‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(#‘𝐹))))) |
| 55 | 54 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((#‘𝐹) ∈
ℕ0 ∧ (𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹)))) → (𝑥 ∈ (0...(#‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(#‘𝐹)))) |
| 56 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑏 = (𝑦 + 1) → (𝑃‘𝑏) = (𝑃‘(𝑦 + 1))) |
| 57 | 56 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = (𝑦 + 1) → ((𝑃‘𝑥) = (𝑃‘𝑏) ↔ (𝑃‘𝑥) = (𝑃‘(𝑦 + 1)))) |
| 58 | | eqeq2 2633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = (𝑦 + 1) → (𝑥 = 𝑏 ↔ 𝑥 = (𝑦 + 1))) |
| 59 | 57, 58 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 = (𝑦 + 1) → (((𝑃‘𝑥) = (𝑃‘𝑏) → 𝑥 = 𝑏) ↔ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1)))) |
| 60 | 41, 59 | rspc2v 3322 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑥 ∈ (0...(#‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(#‘𝐹))) → (∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1)))) |
| 61 | 55, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((#‘𝐹) ∈
ℕ0 ∧ (𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹)))) → (∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1)))) |
| 62 | 61 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((#‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹)))) ∧ ∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏)) → ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1))) |
| 63 | | fzofzp1 12565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑥 ∈ (0..^(#‘𝐹)) → (𝑥 + 1) ∈ (0...(#‘𝐹))) |
| 64 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((#‘𝐹) ∈
ℕ0 → (𝑥 ∈ (0..^(#‘𝐹)) → (𝑥 + 1) ∈ (0...(#‘𝐹)))) |
| 65 | 64, 37 | anim12d1 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((#‘𝐹) ∈
ℕ0 → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → ((𝑥 + 1) ∈ (0...(#‘𝐹)) ∧ 𝑦 ∈ (0...(#‘𝐹))))) |
| 66 | 65 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((#‘𝐹) ∈
ℕ0 ∧ (𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹)))) → ((𝑥 + 1) ∈ (0...(#‘𝐹)) ∧ 𝑦 ∈ (0...(#‘𝐹)))) |
| 67 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑎 = (𝑥 + 1) → (𝑃‘𝑎) = (𝑃‘(𝑥 + 1))) |
| 68 | 67 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑎 = (𝑥 + 1) → ((𝑃‘𝑎) = (𝑃‘𝑏) ↔ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑏))) |
| 69 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑎 = (𝑥 + 1) → (𝑎 = 𝑏 ↔ (𝑥 + 1) = 𝑏)) |
| 70 | 68, 69 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑎 = (𝑥 + 1) → (((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ↔ ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑏) → (𝑥 + 1) = 𝑏))) |
| 71 | 42 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = 𝑦 → ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑏) ↔ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) |
| 72 | | eqeq2 2633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = 𝑦 → ((𝑥 + 1) = 𝑏 ↔ (𝑥 + 1) = 𝑦)) |
| 73 | 71, 72 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 = 𝑦 → (((𝑃‘(𝑥 + 1)) = (𝑃‘𝑏) → (𝑥 + 1) = 𝑏) ↔ ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑦) → (𝑥 + 1) = 𝑦))) |
| 74 | 70, 73 | rspc2v 3322 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑥 + 1) ∈ (0...(#‘𝐹)) ∧ 𝑦 ∈ (0...(#‘𝐹))) → (∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑦) → (𝑥 + 1) = 𝑦))) |
| 75 | 66, 74 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((#‘𝐹) ∈
ℕ0 ∧ (𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹)))) → (∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑦) → (𝑥 + 1) = 𝑦))) |
| 76 | 75 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((#‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹)))) ∧ ∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏)) → ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑦) → (𝑥 + 1) = 𝑦)) |
| 77 | 62, 76 | anim12d 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((#‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹)))) ∧ ∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏)) → (((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)) → (𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦))) |
| 78 | 77 | expimpd 629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((#‘𝐹) ∈
ℕ0 ∧ (𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹)))) → ((∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦))) |
| 79 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1)) |
| 80 | 79 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 + 1) = 𝑦 ↔ ((𝑦 + 1) + 1) = 𝑦)) |
| 81 | 80 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) ∧ 𝑥 = (𝑦 + 1)) → ((𝑥 + 1) = 𝑦 ↔ ((𝑦 + 1) + 1) = 𝑦)) |
| 82 | | elfzonn0 12512 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 ∈ (0..^(#‘𝐹)) → 𝑦 ∈ ℕ0) |
| 83 | | nn0cn 11302 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℂ) |
| 84 | | add1p1 11283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ ℂ → ((𝑦 + 1) + 1) = (𝑦 + 2)) |
| 85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑦 ∈ ℕ0
→ ((𝑦 + 1) + 1) =
(𝑦 + 2)) |
| 86 | 85 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 ∈ ℕ0
→ (((𝑦 + 1) + 1) =
𝑦 ↔ (𝑦 + 2) = 𝑦)) |
| 87 | | 2cnd 11093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ ℕ0
→ 2 ∈ ℂ) |
| 88 | | 2ne0 11113 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ 2 ≠
0 |
| 89 | 88 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ ℕ0
→ 2 ≠ 0) |
| 90 | | addn0nid 10451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑦 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → (𝑦 + 2) ≠ 𝑦) |
| 91 | 83, 87, 89, 90 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 2) ≠ 𝑦) |
| 92 | | eqneqall 2805 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑦 + 2) = 𝑦 → ((𝑦 + 2) ≠ 𝑦 → 𝑥 = 𝑦)) |
| 93 | 91, 92 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 ∈ ℕ0
→ ((𝑦 + 2) = 𝑦 → 𝑥 = 𝑦)) |
| 94 | 86, 93 | sylbid 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 ∈ ℕ0
→ (((𝑦 + 1) + 1) =
𝑦 → 𝑥 = 𝑦)) |
| 95 | 82, 94 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 ∈ (0..^(#‘𝐹)) → (((𝑦 + 1) + 1) = 𝑦 → 𝑥 = 𝑦)) |
| 96 | 95 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → (((𝑦 + 1) + 1) = 𝑦 → 𝑥 = 𝑦)) |
| 97 | 96 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) ∧ 𝑥 = (𝑦 + 1)) → (((𝑦 + 1) + 1) = 𝑦 → 𝑥 = 𝑦)) |
| 98 | 81, 97 | sylbid 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) ∧ 𝑥 = (𝑦 + 1)) → ((𝑥 + 1) = 𝑦 → 𝑥 = 𝑦)) |
| 99 | 98 | expimpd 629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → ((𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦) → 𝑥 = 𝑦)) |
| 100 | 99 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((#‘𝐹) ∈
ℕ0 ∧ (𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹)))) → ((𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦) → 𝑥 = 𝑦)) |
| 101 | 78, 100 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((#‘𝐹) ∈
ℕ0 ∧ (𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹)))) → ((∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → 𝑥 = 𝑦)) |
| 102 | 101 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((#‘𝐹) ∈
ℕ0 → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → ((∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → 𝑥 = 𝑦))) |
| 103 | 51, 102 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → ((∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → 𝑥 = 𝑦))) |
| 104 | 103 | com3l 89 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → ((∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (𝐹 ∈ Fin → 𝑥 = 𝑦))) |
| 105 | 104 | expd 452 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → (∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)) → (𝐹 ∈ Fin → 𝑥 = 𝑦)))) |
| 106 | 105 | com34 91 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → (∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → (((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)) → 𝑥 = 𝑦)))) |
| 107 | 106 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)) → (∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → 𝑥 = 𝑦)))) |
| 108 | 50, 107 | jaoi 394 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → 𝑥 = 𝑦)))) |
| 109 | 108 | adantld 483 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → ((𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑎 ∈ (0...(#‘𝐹))∀𝑏 ∈ (0...(#‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏)) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → 𝑥 = 𝑦)))) |
| 110 | 35, 109 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (𝑃:(0...(#‘𝐹))–1-1→𝑉 → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → 𝑥 = 𝑦)))) |
| 111 | 110 | com23 86 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (𝐹 ∈ Fin → (𝑃:(0...(#‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → 𝑥 = 𝑦)))) |
| 112 | 34, 111 | sylbi 207 |
. . . . . . . . . . . . . . . . . 18
⊢ ({(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))} → (𝐹 ∈ Fin → (𝑃:(0...(#‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → 𝑥 = 𝑦)))) |
| 113 | 29, 112 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → (𝐹 ∈ Fin → (𝑃:(0...(#‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → 𝑥 = 𝑦)))) |
| 114 | 113 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) → (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(#‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → 𝑥 = 𝑦))))) |
| 115 | 22, 114 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(#‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → 𝑥 = 𝑦))))) |
| 116 | 115 | com15 101 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(#‘𝐹))–1-1→𝑉 → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))) |
| 117 | 21, 116 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Fin → (𝑃:(0...(#‘𝐹))–1-1→𝑉 → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))) |
| 118 | 117 | com14 96 |
. . . . . . . . . . . 12
⊢ (𝑃:(0...(#‘𝐹))–1-1→𝑉 → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))) |
| 119 | 118 | imp 445 |
. . . . . . . . . . 11
⊢ ((𝑃:(0...(#‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))) |
| 120 | 119 | impcom 446 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ Fin ∧ (𝑃:(0...(#‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → ((𝑥 ∈ (0..^(#‘𝐹)) ∧ 𝑦 ∈ (0..^(#‘𝐹))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 121 | 120 | ralrimivv 2970 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Fin ∧ (𝑃:(0...(#‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 122 | 121 | adantlr 751 |
. . . . . . . 8
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(#‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 123 | | dff13 6512 |
. . . . . . . 8
⊢ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 124 | 4, 122, 123 | sylanbrc 698 |
. . . . . . 7
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(#‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼) |
| 125 | | df-f1 5893 |
. . . . . . 7
⊢ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹)) |
| 126 | 124, 125 | sylib 208 |
. . . . . 6
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(#‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹)) |
| 127 | | simpr 477 |
. . . . . 6
⊢ ((𝐹:(0..^(#‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹) → Fun ◡𝐹) |
| 128 | 126, 127 | syl 17 |
. . . . 5
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(#‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → Fun ◡𝐹) |
| 129 | 128 | ex 450 |
. . . 4
⊢ ((𝐹 ∈ Fin ∧ 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) → ((𝑃:(0...(#‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → Fun ◡𝐹)) |
| 130 | 129 | expd 452 |
. . 3
⊢ ((𝐹 ∈ Fin ∧ 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) → (𝑃:(0...(#‘𝐹))–1-1→𝑉 → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → Fun ◡𝐹))) |
| 131 | 1, 2, 130 | syl2anc 693 |
. 2
⊢ (𝐹 ∈ Word dom 𝐼 → (𝑃:(0...(#‘𝐹))–1-1→𝑉 → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → Fun ◡𝐹))) |
| 132 | 131 | impcom 446 |
1
⊢ ((𝑃:(0...(#‘𝐹))–1-1→𝑉 ∧ 𝐹 ∈ Word dom 𝐼) → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → Fun ◡𝐹)) |