![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzonn0 | Structured version Visualization version GIF version |
Description: A member of a half-open range of nonnegative integers is a nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
Ref | Expression |
---|---|
elfzonn0 | ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzouz 12474 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ (ℤ≥‘0)) | |
2 | elnn0uz 11725 | . 2 ⊢ (𝐾 ∈ ℕ0 ↔ 𝐾 ∈ (ℤ≥‘0)) | |
3 | 1, 2 | sylibr 224 | 1 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 ‘cfv 5888 (class class class)co 6650 0cc0 9936 ℕ0cn0 11292 ℤ≥cuz 11687 ..^cfzo 12465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 |
This theorem is referenced by: fzo0ssnn0 12548 modsumfzodifsn 12743 resunimafz0 13229 2swrdeqwrdeq 13453 swrdccatin2 13487 repswswrd 13531 fzo0dvdseq 15045 smueqlem 15212 hashgcdlem 15493 cshwsidrepsw 15800 advlogexp 24401 upgrwlkdvdelem 26632 crctcshwlkn0lem2 26703 crctcshwlkn0lem4 26705 crctcshwlkn0 26713 crctcsh 26716 clwwlksel 26914 eucrctshift 27103 numclwwlkovf2exlem2 27212 signsplypnf 30627 poimirlem5 33414 poimirlem6 33415 poimirlem7 33416 poimirlem10 33419 poimirlem11 33420 poimirlem12 33421 poimirlem16 33425 poimirlem17 33426 poimirlem19 33428 poimirlem20 33429 poimirlem22 33431 poimirlem23 33432 poimirlem25 33434 poimirlem29 33438 poimirlem30 33439 poimirlem31 33440 dvnmul 40158 fourierdlem48 40371 pfxmpt 41387 pfxsuffeqwrdeq 41406 pwdif 41501 pwm1geoserALT 41502 2pwp1prm 41503 nnpw2pb 42381 nn0sumshdiglemA 42413 nn0sumshdiglemB 42414 nn0mullong 42419 |
Copyright terms: Public domain | W3C validator |