MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem5 Structured version   Visualization version   GIF version

Theorem vdwlem5 15689
Description: Lemma for vdw 15698. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
vdwlem7.m (𝜑𝑀 ∈ ℕ)
vdwlem7.g (𝜑𝐺:(1...𝑊)⟶𝑅)
vdwlem7.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem7.a (𝜑𝐴 ∈ ℕ)
vdwlem7.d (𝜑𝐷 ∈ ℕ)
vdwlem7.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
vdwlem6.b (𝜑𝐵 ∈ ℕ)
vdwlem6.e (𝜑𝐸:(1...𝑀)⟶ℕ)
vdwlem6.s (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
vdwlem6.j 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸𝑖))))
vdwlem6.r (𝜑 → (#‘ran 𝐽) = 𝑀)
vdwlem6.t 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
vdwlem6.p 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)))
Assertion
Ref Expression
vdwlem5 (𝜑𝑇 ∈ ℕ)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑖,𝑗,𝑥,𝑦,𝐺   𝑖,𝐾,𝑗,𝑥,𝑦   𝑖,𝐽,𝑗,𝑥   𝑃,𝑖,𝑥   𝜑,𝑖,𝑗,𝑥,𝑦   𝑅,𝑖,𝑥,𝑦   𝐵,𝑖,𝑗,𝑥,𝑦   𝑖,𝐻,𝑥,𝑦   𝑖,𝑀,𝑗,𝑥,𝑦   𝐷,𝑗,𝑥,𝑦   𝑖,𝐸,𝑗,𝑥,𝑦   𝑖,𝑊,𝑗,𝑥,𝑦   𝑇,𝑖,𝑥   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖)   𝑃(𝑦,𝑗)   𝑅(𝑗)   𝑇(𝑦,𝑗)   𝐹(𝑥,𝑦,𝑖,𝑗)   𝐻(𝑗)   𝐽(𝑦)   𝑉(𝑖,𝑗)

Proof of Theorem vdwlem5
StepHypRef Expression
1 vdwlem6.t . 2 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
2 vdwlem6.b . . 3 (𝜑𝐵 ∈ ℕ)
3 vdwlem3.w . . . . 5 (𝜑𝑊 ∈ ℕ)
43nnnn0d 11351 . . . 4 (𝜑𝑊 ∈ ℕ0)
5 vdwlem7.a . . . . . 6 (𝜑𝐴 ∈ ℕ)
6 vdwlem3.v . . . . . . . . . 10 (𝜑𝑉 ∈ ℕ)
76nncnd 11036 . . . . . . . . 9 (𝜑𝑉 ∈ ℂ)
8 vdwlem7.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℕ)
98nncnd 11036 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
107, 9subcld 10392 . . . . . . . 8 (𝜑 → (𝑉𝐷) ∈ ℂ)
115nncnd 11036 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1210, 11npcand 10396 . . . . . . 7 (𝜑 → (((𝑉𝐷) − 𝐴) + 𝐴) = (𝑉𝐷))
137, 9, 11subsub4d 10423 . . . . . . . . . 10 (𝜑 → ((𝑉𝐷) − 𝐴) = (𝑉 − (𝐷 + 𝐴)))
149, 11addcomd 10238 . . . . . . . . . . 11 (𝜑 → (𝐷 + 𝐴) = (𝐴 + 𝐷))
1514oveq2d 6666 . . . . . . . . . 10 (𝜑 → (𝑉 − (𝐷 + 𝐴)) = (𝑉 − (𝐴 + 𝐷)))
1613, 15eqtrd 2656 . . . . . . . . 9 (𝜑 → ((𝑉𝐷) − 𝐴) = (𝑉 − (𝐴 + 𝐷)))
17 cnvimass 5485 . . . . . . . . . . . . 13 (𝐹 “ {𝐺}) ⊆ dom 𝐹
18 vdwlem4.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Fin)
19 vdwlem4.h . . . . . . . . . . . . . . 15 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
20 vdwlem4.f . . . . . . . . . . . . . . 15 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
216, 3, 18, 19, 20vdwlem4 15688 . . . . . . . . . . . . . 14 (𝜑𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)))
22 fdm 6051 . . . . . . . . . . . . . 14 (𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)) → dom 𝐹 = (1...𝑉))
2321, 22syl 17 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = (1...𝑉))
2417, 23syl5sseq 3653 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ {𝐺}) ⊆ (1...𝑉))
25 vdwlem7.s . . . . . . . . . . . . 13 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
26 ssun2 3777 . . . . . . . . . . . . . . 15 ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷) ⊆ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
27 vdwlem7.k . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ (ℤ‘2))
28 uz2m1nn 11763 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (ℤ‘2) → (𝐾 − 1) ∈ ℕ)
2927, 28syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 − 1) ∈ ℕ)
305, 8nnaddcld 11067 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 + 𝐷) ∈ ℕ)
31 vdwapid1 15679 . . . . . . . . . . . . . . . 16 (((𝐾 − 1) ∈ ℕ ∧ (𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
3229, 30, 8, 31syl3anc 1326 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
3326, 32sseldi 3601 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝐷) ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
34 eluz2nn 11726 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
3527, 34syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℕ)
3635nncnd 11036 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℂ)
37 ax-1cn 9994 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
38 npcan 10290 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
3936, 37, 38sylancl 694 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
4039fveq2d 6195 . . . . . . . . . . . . . . . 16 (𝜑 → (AP‘((𝐾 − 1) + 1)) = (AP‘𝐾))
4140oveqd 6667 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = (𝐴(AP‘𝐾)𝐷))
42 nnm1nn0 11334 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
4335, 42syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 − 1) ∈ ℕ0)
44 vdwapun 15678 . . . . . . . . . . . . . . . 16 (((𝐾 − 1) ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4543, 5, 8, 44syl3anc 1326 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4641, 45eqtr3d 2658 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(AP‘𝐾)𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4733, 46eleqtrrd 2704 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 𝐷) ∈ (𝐴(AP‘𝐾)𝐷))
4825, 47sseldd 3604 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐷) ∈ (𝐹 “ {𝐺}))
4924, 48sseldd 3604 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐷) ∈ (1...𝑉))
50 elfzuz3 12339 . . . . . . . . . . 11 ((𝐴 + 𝐷) ∈ (1...𝑉) → 𝑉 ∈ (ℤ‘(𝐴 + 𝐷)))
5149, 50syl 17 . . . . . . . . . 10 (𝜑𝑉 ∈ (ℤ‘(𝐴 + 𝐷)))
52 uznn0sub 11719 . . . . . . . . . 10 (𝑉 ∈ (ℤ‘(𝐴 + 𝐷)) → (𝑉 − (𝐴 + 𝐷)) ∈ ℕ0)
5351, 52syl 17 . . . . . . . . 9 (𝜑 → (𝑉 − (𝐴 + 𝐷)) ∈ ℕ0)
5416, 53eqeltrd 2701 . . . . . . . 8 (𝜑 → ((𝑉𝐷) − 𝐴) ∈ ℕ0)
55 nn0nnaddcl 11324 . . . . . . . 8 ((((𝑉𝐷) − 𝐴) ∈ ℕ0𝐴 ∈ ℕ) → (((𝑉𝐷) − 𝐴) + 𝐴) ∈ ℕ)
5654, 5, 55syl2anc 693 . . . . . . 7 (𝜑 → (((𝑉𝐷) − 𝐴) + 𝐴) ∈ ℕ)
5712, 56eqeltrrd 2702 . . . . . 6 (𝜑 → (𝑉𝐷) ∈ ℕ)
585, 57nnaddcld 11067 . . . . 5 (𝜑 → (𝐴 + (𝑉𝐷)) ∈ ℕ)
59 nnm1nn0 11334 . . . . 5 ((𝐴 + (𝑉𝐷)) ∈ ℕ → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℕ0)
6058, 59syl 17 . . . 4 (𝜑 → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℕ0)
614, 60nn0mulcld 11356 . . 3 (𝜑 → (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) ∈ ℕ0)
62 nnnn0addcl 11323 . . 3 ((𝐵 ∈ ℕ ∧ (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) ∈ ℕ0) → (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) ∈ ℕ)
632, 61, 62syl2anc 693 . 2 (𝜑 → (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) ∈ ℕ)
641, 63syl5eqel 2705 1 (𝜑𝑇 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wral 2912  cun 3572  wss 3574  ifcif 4086  {csn 4177  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  cn 11020  2c2 11070  0cn0 11292  cuz 11687  ...cfz 12326  #chash 13117  APcvdwa 15669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-vdwap 15672
This theorem is referenced by:  vdwlem6  15690
  Copyright terms: Public domain W3C validator