MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem5 Structured version   Visualization version   Unicode version

Theorem vdwlem5 15689
Description: Lemma for vdw 15698. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v  |-  ( ph  ->  V  e.  NN )
vdwlem3.w  |-  ( ph  ->  W  e.  NN )
vdwlem4.r  |-  ( ph  ->  R  e.  Fin )
vdwlem4.h  |-  ( ph  ->  H : ( 1 ... ( W  x.  ( 2  x.  V
) ) ) --> R )
vdwlem4.f  |-  F  =  ( x  e.  ( 1 ... V ) 
|->  ( y  e.  ( 1 ... W ) 
|->  ( H `  (
y  +  ( W  x.  ( ( x  -  1 )  +  V ) ) ) ) ) )
vdwlem7.m  |-  ( ph  ->  M  e.  NN )
vdwlem7.g  |-  ( ph  ->  G : ( 1 ... W ) --> R )
vdwlem7.k  |-  ( ph  ->  K  e.  ( ZZ>= ` 
2 ) )
vdwlem7.a  |-  ( ph  ->  A  e.  NN )
vdwlem7.d  |-  ( ph  ->  D  e.  NN )
vdwlem7.s  |-  ( ph  ->  ( A (AP `  K ) D ) 
C_  ( `' F " { G } ) )
vdwlem6.b  |-  ( ph  ->  B  e.  NN )
vdwlem6.e  |-  ( ph  ->  E : ( 1 ... M ) --> NN )
vdwlem6.s  |-  ( ph  ->  A. i  e.  ( 1 ... M ) ( ( B  +  ( E `  i ) ) (AP `  K
) ( E `  i ) )  C_  ( `' G " { ( G `  ( B  +  ( E `  i ) ) ) } ) )
vdwlem6.j  |-  J  =  ( i  e.  ( 1 ... M ) 
|->  ( G `  ( B  +  ( E `  i ) ) ) )
vdwlem6.r  |-  ( ph  ->  ( # `  ran  J )  =  M )
vdwlem6.t  |-  T  =  ( B  +  ( W  x.  ( ( A  +  ( V  -  D ) )  -  1 ) ) )
vdwlem6.p  |-  P  =  ( j  e.  ( 1 ... ( M  +  1 ) ) 
|->  ( if ( j  =  ( M  + 
1 ) ,  0 ,  ( E `  j ) )  +  ( W  x.  D
) ) )
Assertion
Ref Expression
vdwlem5  |-  ( ph  ->  T  e.  NN )
Distinct variable groups:    x, y, A    i, j, x, y, G    i, K, j, x, y    i, J, j, x    P, i, x    ph, i, j, x, y    R, i, x, y    B, i, j, x, y   
i, H, x, y   
i, M, j, x, y    D, j, x, y   
i, E, j, x, y    i, W, j, x, y    T, i, x    x, V, y
Allowed substitution hints:    A( i, j)    D( i)    P( y, j)    R( j)    T( y, j)    F( x, y, i, j)    H( j)    J( y)    V( i, j)

Proof of Theorem vdwlem5
StepHypRef Expression
1 vdwlem6.t . 2  |-  T  =  ( B  +  ( W  x.  ( ( A  +  ( V  -  D ) )  -  1 ) ) )
2 vdwlem6.b . . 3  |-  ( ph  ->  B  e.  NN )
3 vdwlem3.w . . . . 5  |-  ( ph  ->  W  e.  NN )
43nnnn0d 11351 . . . 4  |-  ( ph  ->  W  e.  NN0 )
5 vdwlem7.a . . . . . 6  |-  ( ph  ->  A  e.  NN )
6 vdwlem3.v . . . . . . . . . 10  |-  ( ph  ->  V  e.  NN )
76nncnd 11036 . . . . . . . . 9  |-  ( ph  ->  V  e.  CC )
8 vdwlem7.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  NN )
98nncnd 11036 . . . . . . . . 9  |-  ( ph  ->  D  e.  CC )
107, 9subcld 10392 . . . . . . . 8  |-  ( ph  ->  ( V  -  D
)  e.  CC )
115nncnd 11036 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
1210, 11npcand 10396 . . . . . . 7  |-  ( ph  ->  ( ( ( V  -  D )  -  A )  +  A
)  =  ( V  -  D ) )
137, 9, 11subsub4d 10423 . . . . . . . . . 10  |-  ( ph  ->  ( ( V  -  D )  -  A
)  =  ( V  -  ( D  +  A ) ) )
149, 11addcomd 10238 . . . . . . . . . . 11  |-  ( ph  ->  ( D  +  A
)  =  ( A  +  D ) )
1514oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( V  -  ( D  +  A )
)  =  ( V  -  ( A  +  D ) ) )
1613, 15eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( ( V  -  D )  -  A
)  =  ( V  -  ( A  +  D ) ) )
17 cnvimass 5485 . . . . . . . . . . . . 13  |-  ( `' F " { G } )  C_  dom  F
18 vdwlem4.r . . . . . . . . . . . . . . 15  |-  ( ph  ->  R  e.  Fin )
19 vdwlem4.h . . . . . . . . . . . . . . 15  |-  ( ph  ->  H : ( 1 ... ( W  x.  ( 2  x.  V
) ) ) --> R )
20 vdwlem4.f . . . . . . . . . . . . . . 15  |-  F  =  ( x  e.  ( 1 ... V ) 
|->  ( y  e.  ( 1 ... W ) 
|->  ( H `  (
y  +  ( W  x.  ( ( x  -  1 )  +  V ) ) ) ) ) )
216, 3, 18, 19, 20vdwlem4 15688 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : ( 1 ... V ) --> ( R  ^m  ( 1 ... W ) ) )
22 fdm 6051 . . . . . . . . . . . . . 14  |-  ( F : ( 1 ... V ) --> ( R  ^m  ( 1 ... W ) )  ->  dom  F  =  ( 1 ... V ) )
2321, 22syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  F  =  ( 1 ... V ) )
2417, 23syl5sseq 3653 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' F " { G } )  C_  ( 1 ... V
) )
25 vdwlem7.s . . . . . . . . . . . . 13  |-  ( ph  ->  ( A (AP `  K ) D ) 
C_  ( `' F " { G } ) )
26 ssun2 3777 . . . . . . . . . . . . . . 15  |-  ( ( A  +  D ) (AP `  ( K  -  1 ) ) D )  C_  ( { A }  u.  (
( A  +  D
) (AP `  ( K  -  1 ) ) D ) )
27 vdwlem7.k . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  K  e.  ( ZZ>= ` 
2 ) )
28 uz2m1nn 11763 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( ZZ>= `  2
)  ->  ( K  -  1 )  e.  NN )
2927, 28syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( K  -  1 )  e.  NN )
305, 8nnaddcld 11067 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A  +  D
)  e.  NN )
31 vdwapid1 15679 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  -  1 )  e.  NN  /\  ( A  +  D
)  e.  NN  /\  D  e.  NN )  ->  ( A  +  D
)  e.  ( ( A  +  D ) (AP `  ( K  -  1 ) ) D ) )
3229, 30, 8, 31syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  +  D
)  e.  ( ( A  +  D ) (AP `  ( K  -  1 ) ) D ) )
3326, 32sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  +  D
)  e.  ( { A }  u.  (
( A  +  D
) (AP `  ( K  -  1 ) ) D ) ) )
34 eluz2nn 11726 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  NN )
3527, 34syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  K  e.  NN )
3635nncnd 11036 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  K  e.  CC )
37 ax-1cn 9994 . . . . . . . . . . . . . . . . . 18  |-  1  e.  CC
38 npcan 10290 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  - 
1 )  +  1 )  =  K )
3936, 37, 38sylancl 694 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( K  - 
1 )  +  1 )  =  K )
4039fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  (AP `  ( ( K  -  1 )  +  1 ) )  =  (AP `  K
) )
4140oveqd 6667 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A (AP `  ( ( K  - 
1 )  +  1 ) ) D )  =  ( A (AP
`  K ) D ) )
42 nnm1nn0 11334 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  NN  ->  ( K  -  1 )  e.  NN0 )
4335, 42syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( K  -  1 )  e.  NN0 )
44 vdwapun 15678 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  -  1 )  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( A (AP `  ( ( K  -  1 )  +  1 ) ) D )  =  ( { A }  u.  ( ( A  +  D ) (AP `  ( K  -  1
) ) D ) ) )
4543, 5, 8, 44syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A (AP `  ( ( K  - 
1 )  +  1 ) ) D )  =  ( { A }  u.  ( ( A  +  D )
(AP `  ( K  -  1 ) ) D ) ) )
4641, 45eqtr3d 2658 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A (AP `  K ) D )  =  ( { A }  u.  ( ( A  +  D )
(AP `  ( K  -  1 ) ) D ) ) )
4733, 46eleqtrrd 2704 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  +  D
)  e.  ( A (AP `  K ) D ) )
4825, 47sseldd 3604 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  +  D
)  e.  ( `' F " { G } ) )
4924, 48sseldd 3604 . . . . . . . . . . 11  |-  ( ph  ->  ( A  +  D
)  e.  ( 1 ... V ) )
50 elfzuz3 12339 . . . . . . . . . . 11  |-  ( ( A  +  D )  e.  ( 1 ... V )  ->  V  e.  ( ZZ>= `  ( A  +  D ) ) )
5149, 50syl 17 . . . . . . . . . 10  |-  ( ph  ->  V  e.  ( ZZ>= `  ( A  +  D
) ) )
52 uznn0sub 11719 . . . . . . . . . 10  |-  ( V  e.  ( ZZ>= `  ( A  +  D )
)  ->  ( V  -  ( A  +  D ) )  e. 
NN0 )
5351, 52syl 17 . . . . . . . . 9  |-  ( ph  ->  ( V  -  ( A  +  D )
)  e.  NN0 )
5416, 53eqeltrd 2701 . . . . . . . 8  |-  ( ph  ->  ( ( V  -  D )  -  A
)  e.  NN0 )
55 nn0nnaddcl 11324 . . . . . . . 8  |-  ( ( ( ( V  -  D )  -  A
)  e.  NN0  /\  A  e.  NN )  ->  ( ( ( V  -  D )  -  A )  +  A
)  e.  NN )
5654, 5, 55syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( ( V  -  D )  -  A )  +  A
)  e.  NN )
5712, 56eqeltrrd 2702 . . . . . 6  |-  ( ph  ->  ( V  -  D
)  e.  NN )
585, 57nnaddcld 11067 . . . . 5  |-  ( ph  ->  ( A  +  ( V  -  D ) )  e.  NN )
59 nnm1nn0 11334 . . . . 5  |-  ( ( A  +  ( V  -  D ) )  e.  NN  ->  (
( A  +  ( V  -  D ) )  -  1 )  e.  NN0 )
6058, 59syl 17 . . . 4  |-  ( ph  ->  ( ( A  +  ( V  -  D
) )  -  1 )  e.  NN0 )
614, 60nn0mulcld 11356 . . 3  |-  ( ph  ->  ( W  x.  (
( A  +  ( V  -  D ) )  -  1 ) )  e.  NN0 )
62 nnnn0addcl 11323 . . 3  |-  ( ( B  e.  NN  /\  ( W  x.  (
( A  +  ( V  -  D ) )  -  1 ) )  e.  NN0 )  ->  ( B  +  ( W  x.  ( ( A  +  ( V  -  D ) )  -  1 ) ) )  e.  NN )
632, 61, 62syl2anc 693 . 2  |-  ( ph  ->  ( B  +  ( W  x.  ( ( A  +  ( V  -  D ) )  -  1 ) ) )  e.  NN )
641, 63syl5eqel 2705 1  |-  ( ph  ->  T  e.  NN )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912    u. cun 3572    C_ wss 3574   ifcif 4086   {csn 4177    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326   #chash 13117  APcvdwa 15669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-vdwap 15672
This theorem is referenced by:  vdwlem6  15690
  Copyright terms: Public domain W3C validator