MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem3 Structured version   Visualization version   GIF version

Theorem vdwnnlem3 15701
Description: Lemma for vdwnn 15702. (Contributed by Mario Carneiro, 13-Sep-2014.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
vdwnn.1 (𝜑𝑅 ∈ Fin)
vdwnn.2 (𝜑𝐹:ℕ⟶𝑅)
vdwnn.3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
vdwnn.4 (𝜑 → ∀𝑐𝑅 𝑆 ≠ ∅)
Assertion
Ref Expression
vdwnnlem3 ¬ 𝜑
Distinct variable groups:   𝑎,𝑑,𝑘,𝑚,𝑐   𝜑,𝑎,𝑐,𝑑   𝑅,𝑎,𝑐,𝑑   𝐹,𝑎   𝑘,𝑐,𝐹,𝑑,𝑚   𝑆,𝑎,𝑑,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)   𝑅(𝑘,𝑚)   𝑆(𝑐)

Proof of Theorem vdwnnlem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vdwnn.1 . . 3 (𝜑𝑅 ∈ Fin)
2 vdwnn.3 . . . . . . 7 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
3 ssrab2 3687 . . . . . . 7 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})} ⊆ ℕ
42, 3eqsstri 3635 . . . . . 6 𝑆 ⊆ ℕ
5 nnuz 11723 . . . . . . . 8 ℕ = (ℤ‘1)
64, 5sseqtri 3637 . . . . . . 7 𝑆 ⊆ (ℤ‘1)
7 vdwnn.4 . . . . . . . 8 (𝜑 → ∀𝑐𝑅 𝑆 ≠ ∅)
87r19.21bi 2932 . . . . . . 7 ((𝜑𝑐𝑅) → 𝑆 ≠ ∅)
9 infssuzcl 11772 . . . . . . 7 ((𝑆 ⊆ (ℤ‘1) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
106, 8, 9sylancr 695 . . . . . 6 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
114, 10sseldi 3601 . . . . 5 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℕ)
1211nnred 11035 . . . 4 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℝ)
1312ralrimiva 2966 . . 3 (𝜑 → ∀𝑐𝑅 inf(𝑆, ℝ, < ) ∈ ℝ)
14 fimaxre3 10970 . . 3 ((𝑅 ∈ Fin ∧ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
151, 13, 14syl2anc 693 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
16 vdwnn.2 . . . . . . . . 9 (𝜑𝐹:ℕ⟶𝑅)
17 1nn 11031 . . . . . . . . 9 1 ∈ ℕ
18 ffvelrn 6357 . . . . . . . . 9 ((𝐹:ℕ⟶𝑅 ∧ 1 ∈ ℕ) → (𝐹‘1) ∈ 𝑅)
1916, 17, 18sylancl 694 . . . . . . . 8 (𝜑 → (𝐹‘1) ∈ 𝑅)
20 ne0i 3921 . . . . . . . 8 ((𝐹‘1) ∈ 𝑅𝑅 ≠ ∅)
2119, 20syl 17 . . . . . . 7 (𝜑𝑅 ≠ ∅)
2221adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑅 ≠ ∅)
23 r19.2z 4060 . . . . . . 7 ((𝑅 ≠ ∅ ∧ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥) → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
2423ex 450 . . . . . 6 (𝑅 ≠ ∅ → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥))
2522, 24syl 17 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥))
26 simplr 792 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝑥 ∈ ℝ)
27 fllep1 12602 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
2826, 27syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝑥 ≤ ((⌊‘𝑥) + 1))
2912adantlr 751 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℝ)
3026flcld 12599 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (⌊‘𝑥) ∈ ℤ)
3130peano2zd 11485 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((⌊‘𝑥) + 1) ∈ ℤ)
3231zred 11482 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((⌊‘𝑥) + 1) ∈ ℝ)
33 letr 10131 . . . . . . . . . 10 ((inf(𝑆, ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((inf(𝑆, ℝ, < ) ≤ 𝑥𝑥 ≤ ((⌊‘𝑥) + 1)) → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3429, 26, 32, 33syl3anc 1326 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((inf(𝑆, ℝ, < ) ≤ 𝑥𝑥 ≤ ((⌊‘𝑥) + 1)) → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3528, 34mpan2d 710 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3611adantlr 751 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℕ)
3736nnzd 11481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℤ)
38 eluz 11701 . . . . . . . . . 10 ((inf(𝑆, ℝ, < ) ∈ ℤ ∧ ((⌊‘𝑥) + 1) ∈ ℤ) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) ↔ inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3937, 31, 38syl2anc 693 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) ↔ inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
40 simpll 790 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝜑)
4110adantlr 751 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
421, 16, 2vdwnnlem2 15700 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < ))) → (inf(𝑆, ℝ, < ) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ 𝑆))
4342impancom 456 . . . . . . . . . 10 ((𝜑 ∧ inf(𝑆, ℝ, < ) ∈ 𝑆) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4440, 41, 43syl2anc 693 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4539, 44sylbird 250 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4635, 45syld 47 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ 𝑆))
474sseli 3599 . . . . . . . 8 (((⌊‘𝑥) + 1) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ ℕ)
4847nnnn0d 11351 . . . . . . 7 (((⌊‘𝑥) + 1) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ ℕ0)
4946, 48syl6 35 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ ℕ0))
5049rexlimdva 3031 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ ℕ0))
511adantr 481 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → 𝑅 ∈ Fin)
5216adantr 481 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → 𝐹:ℕ⟶𝑅)
53 simpr 477 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ((⌊‘𝑥) + 1) ∈ ℕ0)
54 vdwnnlem1 15699 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
5551, 52, 53, 54syl3anc 1326 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
5655ex 450 . . . . . 6 (𝜑 → (((⌊‘𝑥) + 1) ∈ ℕ0 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
5756adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((⌊‘𝑥) + 1) ∈ ℕ0 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
5825, 50, 573syld 60 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
59 oveq1 6657 . . . . . . . . . . . . 13 (𝑘 = ((⌊‘𝑥) + 1) → (𝑘 − 1) = (((⌊‘𝑥) + 1) − 1))
6059oveq2d 6666 . . . . . . . . . . . 12 (𝑘 = ((⌊‘𝑥) + 1) → (0...(𝑘 − 1)) = (0...(((⌊‘𝑥) + 1) − 1)))
6160raleqdv 3144 . . . . . . . . . . 11 (𝑘 = ((⌊‘𝑥) + 1) → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
62612rexbidv 3057 . . . . . . . . . 10 (𝑘 = ((⌊‘𝑥) + 1) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6362notbid 308 . . . . . . . . 9 (𝑘 = ((⌊‘𝑥) + 1) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6463, 2elrab2 3366 . . . . . . . 8 (((⌊‘𝑥) + 1) ∈ 𝑆 ↔ (((⌊‘𝑥) + 1) ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6564simprbi 480 . . . . . . 7 (((⌊‘𝑥) + 1) ∈ 𝑆 → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
6646, 65syl6 35 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6766ralimdva 2962 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∀𝑐𝑅 ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
68 ralnex 2992 . . . . 5 (∀𝑐𝑅 ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
6967, 68syl6ib 241 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ¬ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
7058, 69pm2.65d 187 . . 3 ((𝜑𝑥 ∈ ℝ) → ¬ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
7170nrexdv 3001 . 2 (𝜑 → ¬ ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
7215, 71pm2.65i 185 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  ccnv 5113  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  infcinf 8347  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  cfl 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-hash 13118  df-vdwap 15672  df-vdwmc 15673  df-vdwpc 15674
This theorem is referenced by:  vdwnn  15702
  Copyright terms: Public domain W3C validator