Step | Hyp | Ref
| Expression |
1 | | vdwnn.1 |
. . 3
⊢ (𝜑 → 𝑅 ∈ Fin) |
2 | | vdwnn.3 |
. . . . . . 7
⊢ 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})} |
3 | | ssrab2 3687 |
. . . . . . 7
⊢ {𝑘 ∈ ℕ ∣ ¬
∃𝑎 ∈ ℕ
∃𝑑 ∈ ℕ
∀𝑚 ∈
(0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})} ⊆ ℕ |
4 | 2, 3 | eqsstri 3635 |
. . . . . 6
⊢ 𝑆 ⊆
ℕ |
5 | | nnuz 11723 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
6 | 4, 5 | sseqtri 3637 |
. . . . . . 7
⊢ 𝑆 ⊆
(ℤ≥‘1) |
7 | | vdwnn.4 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑐 ∈ 𝑅 𝑆 ≠ ∅) |
8 | 7 | r19.21bi 2932 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑅) → 𝑆 ≠ ∅) |
9 | | infssuzcl 11772 |
. . . . . . 7
⊢ ((𝑆 ⊆
(ℤ≥‘1) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆) |
10 | 6, 8, 9 | sylancr 695 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑅) → inf(𝑆, ℝ, < ) ∈ 𝑆) |
11 | 4, 10 | sseldi 3601 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑅) → inf(𝑆, ℝ, < ) ∈
ℕ) |
12 | 11 | nnred 11035 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑅) → inf(𝑆, ℝ, < ) ∈
ℝ) |
13 | 12 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ∈
ℝ) |
14 | | fimaxre3 10970 |
. . 3
⊢ ((𝑅 ∈ Fin ∧ ∀𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ∈ ℝ) →
∃𝑥 ∈ ℝ
∀𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥) |
15 | 1, 13, 14 | syl2anc 693 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥) |
16 | | vdwnn.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℕ⟶𝑅) |
17 | | 1nn 11031 |
. . . . . . . . 9
⊢ 1 ∈
ℕ |
18 | | ffvelrn 6357 |
. . . . . . . . 9
⊢ ((𝐹:ℕ⟶𝑅 ∧ 1 ∈ ℕ) →
(𝐹‘1) ∈ 𝑅) |
19 | 16, 17, 18 | sylancl 694 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘1) ∈ 𝑅) |
20 | | ne0i 3921 |
. . . . . . . 8
⊢ ((𝐹‘1) ∈ 𝑅 → 𝑅 ≠ ∅) |
21 | 19, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ≠ ∅) |
22 | 21 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑅 ≠ ∅) |
23 | | r19.2z 4060 |
. . . . . . 7
⊢ ((𝑅 ≠ ∅ ∧
∀𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥) → ∃𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥) |
24 | 23 | ex 450 |
. . . . . 6
⊢ (𝑅 ≠ ∅ →
(∀𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)) |
25 | 22, 24 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)) |
26 | | simplr 792 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → 𝑥 ∈ ℝ) |
27 | | fllep1 12602 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1)) |
28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → 𝑥 ≤ ((⌊‘𝑥) + 1)) |
29 | 12 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → inf(𝑆, ℝ, < ) ∈
ℝ) |
30 | 26 | flcld 12599 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → (⌊‘𝑥) ∈ ℤ) |
31 | 30 | peano2zd 11485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → ((⌊‘𝑥) + 1) ∈ ℤ) |
32 | 31 | zred 11482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → ((⌊‘𝑥) + 1) ∈ ℝ) |
33 | | letr 10131 |
. . . . . . . . . 10
⊢
((inf(𝑆, ℝ,
< ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) →
((inf(𝑆, ℝ, < )
≤ 𝑥 ∧ 𝑥 ≤ ((⌊‘𝑥) + 1)) → inf(𝑆, ℝ, < ) ≤
((⌊‘𝑥) +
1))) |
34 | 29, 26, 32, 33 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → ((inf(𝑆, ℝ, < ) ≤ 𝑥 ∧ 𝑥 ≤ ((⌊‘𝑥) + 1)) → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1))) |
35 | 28, 34 | mpan2d 710 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1))) |
36 | 11 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → inf(𝑆, ℝ, < ) ∈
ℕ) |
37 | 36 | nnzd 11481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → inf(𝑆, ℝ, < ) ∈
ℤ) |
38 | | eluz 11701 |
. . . . . . . . . 10
⊢
((inf(𝑆, ℝ,
< ) ∈ ℤ ∧ ((⌊‘𝑥) + 1) ∈ ℤ) →
(((⌊‘𝑥) + 1)
∈ (ℤ≥‘inf(𝑆, ℝ, < )) ↔ inf(𝑆, ℝ, < ) ≤
((⌊‘𝑥) +
1))) |
39 | 37, 31, 38 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → (((⌊‘𝑥) + 1) ∈
(ℤ≥‘inf(𝑆, ℝ, < )) ↔ inf(𝑆, ℝ, < ) ≤
((⌊‘𝑥) +
1))) |
40 | | simpll 790 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → 𝜑) |
41 | 10 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → inf(𝑆, ℝ, < ) ∈ 𝑆) |
42 | 1, 16, 2 | vdwnnlem2 15700 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈
(ℤ≥‘inf(𝑆, ℝ, < ))) → (inf(𝑆, ℝ, < ) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ 𝑆)) |
43 | 42 | impancom 456 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ inf(𝑆, ℝ, < ) ∈ 𝑆) → (((⌊‘𝑥) + 1) ∈
(ℤ≥‘inf(𝑆, ℝ, < )) →
((⌊‘𝑥) + 1)
∈ 𝑆)) |
44 | 40, 41, 43 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → (((⌊‘𝑥) + 1) ∈
(ℤ≥‘inf(𝑆, ℝ, < )) →
((⌊‘𝑥) + 1)
∈ 𝑆)) |
45 | 39, 44 | sylbird 250 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → (inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1) →
((⌊‘𝑥) + 1)
∈ 𝑆)) |
46 | 35, 45 | syld 47 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ 𝑆)) |
47 | 4 | sseli 3599 |
. . . . . . . 8
⊢
(((⌊‘𝑥)
+ 1) ∈ 𝑆 →
((⌊‘𝑥) + 1)
∈ ℕ) |
48 | 47 | nnnn0d 11351 |
. . . . . . 7
⊢
(((⌊‘𝑥)
+ 1) ∈ 𝑆 →
((⌊‘𝑥) + 1)
∈ ℕ0) |
49 | 46, 48 | syl6 35 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈
ℕ0)) |
50 | 49 | rexlimdva 3031 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈
ℕ0)) |
51 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈
ℕ0) → 𝑅 ∈ Fin) |
52 | 16 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈
ℕ0) → 𝐹:ℕ⟶𝑅) |
53 | | simpr 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈
ℕ0) → ((⌊‘𝑥) + 1) ∈
ℕ0) |
54 | | vdwnnlem1 15699 |
. . . . . . . 8
⊢ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ ((⌊‘𝑥) + 1) ∈
ℕ0) → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
55 | 51, 52, 53, 54 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈
ℕ0) → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
56 | 55 | ex 450 |
. . . . . 6
⊢ (𝜑 → (((⌊‘𝑥) + 1) ∈
ℕ0 → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
57 | 56 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(((⌊‘𝑥) + 1)
∈ ℕ0 → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
58 | 25, 50, 57 | 3syld 60 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
59 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑘 = ((⌊‘𝑥) + 1) → (𝑘 − 1) =
(((⌊‘𝑥) + 1)
− 1)) |
60 | 59 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑘 = ((⌊‘𝑥) + 1) → (0...(𝑘 − 1)) =
(0...(((⌊‘𝑥) +
1) − 1))) |
61 | 60 | raleqdv 3144 |
. . . . . . . . . . 11
⊢ (𝑘 = ((⌊‘𝑥) + 1) → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
62 | 61 | 2rexbidv 3057 |
. . . . . . . . . 10
⊢ (𝑘 = ((⌊‘𝑥) + 1) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
63 | 62 | notbid 308 |
. . . . . . . . 9
⊢ (𝑘 = ((⌊‘𝑥) + 1) → (¬
∃𝑎 ∈ ℕ
∃𝑑 ∈ ℕ
∀𝑚 ∈
(0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
64 | 63, 2 | elrab2 3366 |
. . . . . . . 8
⊢
(((⌊‘𝑥)
+ 1) ∈ 𝑆 ↔
(((⌊‘𝑥) + 1)
∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
65 | 64 | simprbi 480 |
. . . . . . 7
⊢
(((⌊‘𝑥)
+ 1) ∈ 𝑆 → ¬
∃𝑎 ∈ ℕ
∃𝑑 ∈ ℕ
∀𝑚 ∈
(0...(((⌊‘𝑥) +
1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
66 | 46, 65 | syl6 35 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ 𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
67 | 66 | ralimdva 2962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∀𝑐 ∈ 𝑅 ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
68 | | ralnex 2992 |
. . . . 5
⊢
(∀𝑐 ∈
𝑅 ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈
(0...(((⌊‘𝑥) +
1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ ¬ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
69 | 67, 68 | syl6ib 241 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ¬ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
70 | 58, 69 | pm2.65d 187 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ¬ ∀𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥) |
71 | 70 | nrexdv 3001 |
. 2
⊢ (𝜑 → ¬ ∃𝑥 ∈ ℝ ∀𝑐 ∈ 𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥) |
72 | 15, 71 | pm2.65i 185 |
1
⊢ ¬
𝜑 |