| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vdwnnlem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for vdwnn 15702. (Contributed by Mario Carneiro, 13-Sep-2014.) (Proof shortened by AV, 27-Sep-2020.) |
| Ref | Expression |
|---|---|
| vdwnn.1 |
|
| vdwnn.2 |
|
| vdwnn.3 |
|
| vdwnn.4 |
|
| Ref | Expression |
|---|---|
| vdwnnlem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vdwnn.1 |
. . 3
| |
| 2 | vdwnn.3 |
. . . . . . 7
| |
| 3 | ssrab2 3687 |
. . . . . . 7
| |
| 4 | 2, 3 | eqsstri 3635 |
. . . . . 6
|
| 5 | nnuz 11723 |
. . . . . . . 8
| |
| 6 | 4, 5 | sseqtri 3637 |
. . . . . . 7
|
| 7 | vdwnn.4 |
. . . . . . . 8
| |
| 8 | 7 | r19.21bi 2932 |
. . . . . . 7
|
| 9 | infssuzcl 11772 |
. . . . . . 7
| |
| 10 | 6, 8, 9 | sylancr 695 |
. . . . . 6
|
| 11 | 4, 10 | sseldi 3601 |
. . . . 5
|
| 12 | 11 | nnred 11035 |
. . . 4
|
| 13 | 12 | ralrimiva 2966 |
. . 3
|
| 14 | fimaxre3 10970 |
. . 3
| |
| 15 | 1, 13, 14 | syl2anc 693 |
. 2
|
| 16 | vdwnn.2 |
. . . . . . . . 9
| |
| 17 | 1nn 11031 |
. . . . . . . . 9
| |
| 18 | ffvelrn 6357 |
. . . . . . . . 9
| |
| 19 | 16, 17, 18 | sylancl 694 |
. . . . . . . 8
|
| 20 | ne0i 3921 |
. . . . . . . 8
| |
| 21 | 19, 20 | syl 17 |
. . . . . . 7
|
| 22 | 21 | adantr 481 |
. . . . . 6
|
| 23 | r19.2z 4060 |
. . . . . . 7
| |
| 24 | 23 | ex 450 |
. . . . . 6
|
| 25 | 22, 24 | syl 17 |
. . . . 5
|
| 26 | simplr 792 |
. . . . . . . . . 10
| |
| 27 | fllep1 12602 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | syl 17 |
. . . . . . . . 9
|
| 29 | 12 | adantlr 751 |
. . . . . . . . . 10
|
| 30 | 26 | flcld 12599 |
. . . . . . . . . . . 12
|
| 31 | 30 | peano2zd 11485 |
. . . . . . . . . . 11
|
| 32 | 31 | zred 11482 |
. . . . . . . . . 10
|
| 33 | letr 10131 |
. . . . . . . . . 10
| |
| 34 | 29, 26, 32, 33 | syl3anc 1326 |
. . . . . . . . 9
|
| 35 | 28, 34 | mpan2d 710 |
. . . . . . . 8
|
| 36 | 11 | adantlr 751 |
. . . . . . . . . . 11
|
| 37 | 36 | nnzd 11481 |
. . . . . . . . . 10
|
| 38 | eluz 11701 |
. . . . . . . . . 10
| |
| 39 | 37, 31, 38 | syl2anc 693 |
. . . . . . . . 9
|
| 40 | simpll 790 |
. . . . . . . . . 10
| |
| 41 | 10 | adantlr 751 |
. . . . . . . . . 10
|
| 42 | 1, 16, 2 | vdwnnlem2 15700 |
. . . . . . . . . . 11
|
| 43 | 42 | impancom 456 |
. . . . . . . . . 10
|
| 44 | 40, 41, 43 | syl2anc 693 |
. . . . . . . . 9
|
| 45 | 39, 44 | sylbird 250 |
. . . . . . . 8
|
| 46 | 35, 45 | syld 47 |
. . . . . . 7
|
| 47 | 4 | sseli 3599 |
. . . . . . . 8
|
| 48 | 47 | nnnn0d 11351 |
. . . . . . 7
|
| 49 | 46, 48 | syl6 35 |
. . . . . 6
|
| 50 | 49 | rexlimdva 3031 |
. . . . 5
|
| 51 | 1 | adantr 481 |
. . . . . . . 8
|
| 52 | 16 | adantr 481 |
. . . . . . . 8
|
| 53 | simpr 477 |
. . . . . . . 8
| |
| 54 | vdwnnlem1 15699 |
. . . . . . . 8
| |
| 55 | 51, 52, 53, 54 | syl3anc 1326 |
. . . . . . 7
|
| 56 | 55 | ex 450 |
. . . . . 6
|
| 57 | 56 | adantr 481 |
. . . . 5
|
| 58 | 25, 50, 57 | 3syld 60 |
. . . 4
|
| 59 | oveq1 6657 |
. . . . . . . . . . . . 13
| |
| 60 | 59 | oveq2d 6666 |
. . . . . . . . . . . 12
|
| 61 | 60 | raleqdv 3144 |
. . . . . . . . . . 11
|
| 62 | 61 | 2rexbidv 3057 |
. . . . . . . . . 10
|
| 63 | 62 | notbid 308 |
. . . . . . . . 9
|
| 64 | 63, 2 | elrab2 3366 |
. . . . . . . 8
|
| 65 | 64 | simprbi 480 |
. . . . . . 7
|
| 66 | 46, 65 | syl6 35 |
. . . . . 6
|
| 67 | 66 | ralimdva 2962 |
. . . . 5
|
| 68 | ralnex 2992 |
. . . . 5
| |
| 69 | 67, 68 | syl6ib 241 |
. . . 4
|
| 70 | 58, 69 | pm2.65d 187 |
. . 3
|
| 71 | 70 | nrexdv 3001 |
. 2
|
| 72 | 15, 71 | pm2.65i 185 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fl 12593 df-hash 13118 df-vdwap 15672 df-vdwmc 15673 df-vdwpc 15674 |
| This theorem is referenced by: vdwnn 15702 |
| Copyright terms: Public domain | W3C validator |