MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1fi Structured version   Visualization version   GIF version

Theorem vtxdginducedm1fi 26440
Description: The degree of a vertex 𝑣 in the induced subgraph 𝑆 of a pseudograph 𝐺 of finite size obtained by removing one vertex 𝑁 plus the number of edges joining the vertex 𝑣 and the vertex 𝑁 is the degree of the vertex 𝑣 in the pseudograph 𝐺. (Contributed by AV, 18-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v 𝑉 = (Vtx‘𝐺)
vtxdginducedm1.e 𝐸 = (iEdg‘𝐺)
vtxdginducedm1.k 𝐾 = (𝑉 ∖ {𝑁})
vtxdginducedm1.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
vtxdginducedm1.p 𝑃 = (𝐸𝐼)
vtxdginducedm1.s 𝑆 = ⟨𝐾, 𝑃
vtxdginducedm1.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
vtxdginducedm1fi (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})))
Distinct variable groups:   𝑖,𝐸   𝑖,𝑁   𝐸,𝑙   𝐽,𝑙   𝑣,𝑙,𝐸
Allowed substitution hints:   𝑃(𝑣,𝑖,𝑙)   𝑆(𝑣,𝑖,𝑙)   𝐺(𝑣,𝑖,𝑙)   𝐼(𝑣,𝑖,𝑙)   𝐽(𝑣,𝑖)   𝐾(𝑣,𝑖,𝑙)   𝑁(𝑣,𝑙)   𝑉(𝑣,𝑖,𝑙)

Proof of Theorem vtxdginducedm1fi
StepHypRef Expression
1 vtxdginducedm1.v . . 3 𝑉 = (Vtx‘𝐺)
2 vtxdginducedm1.e . . 3 𝐸 = (iEdg‘𝐺)
3 vtxdginducedm1.k . . 3 𝐾 = (𝑉 ∖ {𝑁})
4 vtxdginducedm1.i . . 3 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
5 vtxdginducedm1.p . . 3 𝑃 = (𝐸𝐼)
6 vtxdginducedm1.s . . 3 𝑆 = ⟨𝐾, 𝑃
7 vtxdginducedm1.j . . 3 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
81, 2, 3, 4, 5, 6, 7vtxdginducedm1 26439 . 2 𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}))
95dmeqi 5325 . . . . . . . . 9 dom 𝑃 = dom (𝐸𝐼)
10 finresfin 8186 . . . . . . . . . 10 (𝐸 ∈ Fin → (𝐸𝐼) ∈ Fin)
11 dmfi 8244 . . . . . . . . . 10 ((𝐸𝐼) ∈ Fin → dom (𝐸𝐼) ∈ Fin)
1210, 11syl 17 . . . . . . . . 9 (𝐸 ∈ Fin → dom (𝐸𝐼) ∈ Fin)
139, 12syl5eqel 2705 . . . . . . . 8 (𝐸 ∈ Fin → dom 𝑃 ∈ Fin)
146fveq2i 6194 . . . . . . . . . 10 (Vtx‘𝑆) = (Vtx‘⟨𝐾, 𝑃⟩)
151fvexi 6202 . . . . . . . . . . . . 13 𝑉 ∈ V
1615difexi 4809 . . . . . . . . . . . 12 (𝑉 ∖ {𝑁}) ∈ V
173, 16eqeltri 2697 . . . . . . . . . . 11 𝐾 ∈ V
182fvexi 6202 . . . . . . . . . . . . 13 𝐸 ∈ V
1918resex 5443 . . . . . . . . . . . 12 (𝐸𝐼) ∈ V
205, 19eqeltri 2697 . . . . . . . . . . 11 𝑃 ∈ V
2117, 20opvtxfvi 25889 . . . . . . . . . 10 (Vtx‘⟨𝐾, 𝑃⟩) = 𝐾
2214, 21, 33eqtrri 2649 . . . . . . . . 9 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
231, 2, 3, 4, 5, 6vtxdginducedm1lem1 26435 . . . . . . . . . 10 (iEdg‘𝑆) = 𝑃
2423eqcomi 2631 . . . . . . . . 9 𝑃 = (iEdg‘𝑆)
25 eqid 2622 . . . . . . . . 9 dom 𝑃 = dom 𝑃
2622, 24, 25vtxdgfisnn0 26371 . . . . . . . 8 ((dom 𝑃 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0)
2713, 26sylan 488 . . . . . . 7 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0)
2827nn0red 11352 . . . . . 6 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℝ)
29 dmfi 8244 . . . . . . . . . . 11 (𝐸 ∈ Fin → dom 𝐸 ∈ Fin)
30 rabfi 8185 . . . . . . . . . . 11 (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ Fin)
3129, 30syl 17 . . . . . . . . . 10 (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ Fin)
327, 31syl5eqel 2705 . . . . . . . . 9 (𝐸 ∈ Fin → 𝐽 ∈ Fin)
33 rabfi 8185 . . . . . . . . 9 (𝐽 ∈ Fin → {𝑙𝐽𝑣 ∈ (𝐸𝑙)} ∈ Fin)
34 hashcl 13147 . . . . . . . . 9 ({𝑙𝐽𝑣 ∈ (𝐸𝑙)} ∈ Fin → (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}) ∈ ℕ0)
3532, 33, 343syl 18 . . . . . . . 8 (𝐸 ∈ Fin → (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}) ∈ ℕ0)
3635adantr 481 . . . . . . 7 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}) ∈ ℕ0)
3736nn0red 11352 . . . . . 6 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}) ∈ ℝ)
3828, 37rexaddd 12065 . . . . 5 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝑆)‘𝑣) +𝑒 (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})) = (((VtxDeg‘𝑆)‘𝑣) + (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})))
3938eqeq2d 2632 . . . 4 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})) ↔ ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}))))
4039biimpd 219 . . 3 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})) → ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}))))
4140ralimdva 2962 . 2 (𝐸 ∈ Fin → (∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}))))
428, 41mpi 20 1 (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (#‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wnel 2897  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  {csn 4177  cop 4183  dom cdm 5114  cres 5116  cfv 5888  (class class class)co 6650  Fincfn 7955   + caddc 9939  0cn0 11292   +𝑒 cxad 11944  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-vtx 25876  df-iedg 25877  df-vtxdg 26362
This theorem is referenced by:  finsumvtxdg2ssteplem4  26444
  Copyright terms: Public domain W3C validator