Proof of Theorem finsumvtxdg2ssteplem4
| Step | Hyp | Ref
| Expression |
| 1 | | finsumvtxdg2sstep.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | finsumvtxdg2sstep.e |
. . . . . . . 8
⊢ 𝐸 = (iEdg‘𝐺) |
| 3 | | finsumvtxdg2sstep.k |
. . . . . . . 8
⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
| 4 | | finsumvtxdg2sstep.i |
. . . . . . . 8
⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
| 5 | | finsumvtxdg2sstep.p |
. . . . . . . 8
⊢ 𝑃 = (𝐸 ↾ 𝐼) |
| 6 | | finsumvtxdg2sstep.s |
. . . . . . . 8
⊢ 𝑆 = 〈𝐾, 𝑃〉 |
| 7 | | finsumvtxdg2ssteplem.j |
. . . . . . . 8
⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
| 8 | 1, 2, 3, 4, 5, 6, 7 | vtxdginducedm1fi 26440 |
. . . . . . 7
⊢ (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}))) |
| 9 | 8 | ad2antll 765 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}))) |
| 10 | 9 | sumeq2d 14432 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})(((VtxDeg‘𝑆)‘𝑣) + (#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}))) |
| 11 | | diffi 8192 |
. . . . . . . 8
⊢ (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin) |
| 12 | 11 | adantr 481 |
. . . . . . 7
⊢ ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (𝑉 ∖ {𝑁}) ∈ Fin) |
| 13 | 12 | adantl 482 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑉 ∖ {𝑁}) ∈ Fin) |
| 14 | 5 | dmeqi 5325 |
. . . . . . . . 9
⊢ dom 𝑃 = dom (𝐸 ↾ 𝐼) |
| 15 | | finresfin 8186 |
. . . . . . . . . 10
⊢ (𝐸 ∈ Fin → (𝐸 ↾ 𝐼) ∈ Fin) |
| 16 | | dmfi 8244 |
. . . . . . . . . 10
⊢ ((𝐸 ↾ 𝐼) ∈ Fin → dom (𝐸 ↾ 𝐼) ∈ Fin) |
| 17 | 15, 16 | syl 17 |
. . . . . . . . 9
⊢ (𝐸 ∈ Fin → dom (𝐸 ↾ 𝐼) ∈ Fin) |
| 18 | 14, 17 | syl5eqel 2705 |
. . . . . . . 8
⊢ (𝐸 ∈ Fin → dom 𝑃 ∈ Fin) |
| 19 | 18 | ad2antll 765 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → dom 𝑃 ∈ Fin) |
| 20 | 3 | eqcomi 2631 |
. . . . . . . . 9
⊢ (𝑉 ∖ {𝑁}) = 𝐾 |
| 21 | 20 | eleq2i 2693 |
. . . . . . . 8
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) ↔ 𝑣 ∈ 𝐾) |
| 22 | 21 | biimpi 206 |
. . . . . . 7
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣 ∈ 𝐾) |
| 23 | 6 | fveq2i 6194 |
. . . . . . . . . 10
⊢
(Vtx‘𝑆) =
(Vtx‘〈𝐾, 𝑃〉) |
| 24 | 1 | fvexi 6202 |
. . . . . . . . . . . . 13
⊢ 𝑉 ∈ V |
| 25 | 24 | difexi 4809 |
. . . . . . . . . . . 12
⊢ (𝑉 ∖ {𝑁}) ∈ V |
| 26 | 3, 25 | eqeltri 2697 |
. . . . . . . . . . 11
⊢ 𝐾 ∈ V |
| 27 | 2 | fvexi 6202 |
. . . . . . . . . . . . 13
⊢ 𝐸 ∈ V |
| 28 | 27 | resex 5443 |
. . . . . . . . . . . 12
⊢ (𝐸 ↾ 𝐼) ∈ V |
| 29 | 5, 28 | eqeltri 2697 |
. . . . . . . . . . 11
⊢ 𝑃 ∈ V |
| 30 | 26, 29 | opvtxfvi 25889 |
. . . . . . . . . 10
⊢
(Vtx‘〈𝐾,
𝑃〉) = 𝐾 |
| 31 | 23, 30 | eqtr2i 2645 |
. . . . . . . . 9
⊢ 𝐾 = (Vtx‘𝑆) |
| 32 | 1, 2, 3, 4, 5, 6 | vtxdginducedm1lem1 26435 |
. . . . . . . . . 10
⊢
(iEdg‘𝑆) =
𝑃 |
| 33 | 32 | eqcomi 2631 |
. . . . . . . . 9
⊢ 𝑃 = (iEdg‘𝑆) |
| 34 | | eqid 2622 |
. . . . . . . . 9
⊢ dom 𝑃 = dom 𝑃 |
| 35 | 31, 33, 34 | vtxdgfisnn0 26371 |
. . . . . . . 8
⊢ ((dom
𝑃 ∈ Fin ∧ 𝑣 ∈ 𝐾) → ((VtxDeg‘𝑆)‘𝑣) ∈
ℕ0) |
| 36 | 35 | nn0cnd 11353 |
. . . . . . 7
⊢ ((dom
𝑃 ∈ Fin ∧ 𝑣 ∈ 𝐾) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℂ) |
| 37 | 19, 22, 36 | syl2an 494 |
. . . . . 6
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℂ) |
| 38 | | dmfi 8244 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ Fin → dom 𝐸 ∈ Fin) |
| 39 | | rabfi 8185 |
. . . . . . . . . . . 12
⊢ (dom
𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ∈ Fin) |
| 40 | 38, 39 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ∈ Fin) |
| 41 | 7, 40 | syl5eqel 2705 |
. . . . . . . . . 10
⊢ (𝐸 ∈ Fin → 𝐽 ∈ Fin) |
| 42 | | rabfi 8185 |
. . . . . . . . . 10
⊢ (𝐽 ∈ Fin → {𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)} ∈ Fin) |
| 43 | | hashcl 13147 |
. . . . . . . . . 10
⊢ ({𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)} ∈ Fin → (#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) ∈
ℕ0) |
| 44 | 41, 42, 43 | 3syl 18 |
. . . . . . . . 9
⊢ (𝐸 ∈ Fin →
(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) ∈
ℕ0) |
| 45 | 44 | nn0cnd 11353 |
. . . . . . . 8
⊢ (𝐸 ∈ Fin →
(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) ∈ ℂ) |
| 46 | 45 | ad2antll 765 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) ∈ ℂ) |
| 47 | 46 | adantr 481 |
. . . . . 6
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) ∈ ℂ) |
| 48 | 13, 37, 47 | fsumadd 14470 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(((VtxDeg‘𝑆)‘𝑣) + (#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)})) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}))) |
| 49 | 10, 48 | eqtrd 2656 |
. . . 4
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}))) |
| 50 | 3 | sumeq1i 14428 |
. . . . . 6
⊢
Σ𝑣 ∈
𝐾 ((VtxDeg‘𝑆)‘𝑣) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) |
| 51 | 50 | eqeq1i 2627 |
. . . . 5
⊢
(Σ𝑣 ∈
𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (#‘𝑃)) ↔ Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) = (2 · (#‘𝑃))) |
| 52 | | oveq1 6657 |
. . . . 5
⊢
(Σ𝑣 ∈
(𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) = (2 · (#‘𝑃)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)})) = ((2 · (#‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}))) |
| 53 | 51, 52 | sylbi 207 |
. . . 4
⊢
(Σ𝑣 ∈
𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (#‘𝑃)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)})) = ((2 · (#‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}))) |
| 54 | 49, 53 | sylan9eq 2676 |
. . 3
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (#‘𝑃))) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = ((2 · (#‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}))) |
| 55 | 54 | oveq1d 6665 |
. 2
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (#‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((#‘𝐽) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) = (((2 · (#‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)})) + ((#‘𝐽) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})))) |
| 56 | 45 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) →
(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) ∈ ℂ) |
| 57 | 56 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) ∈ ℂ) |
| 58 | 12, 57 | fsumcl 14464 |
. . . . . . . 8
⊢ ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) ∈ ℂ) |
| 59 | | hashcl 13147 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Fin →
(#‘𝐽) ∈
ℕ0) |
| 60 | 41, 59 | syl 17 |
. . . . . . . . . 10
⊢ (𝐸 ∈ Fin →
(#‘𝐽) ∈
ℕ0) |
| 61 | 60 | nn0cnd 11353 |
. . . . . . . . 9
⊢ (𝐸 ∈ Fin →
(#‘𝐽) ∈
ℂ) |
| 62 | 61 | adantl 482 |
. . . . . . . 8
⊢ ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) →
(#‘𝐽) ∈
ℂ) |
| 63 | | rabfi 8185 |
. . . . . . . . . . 11
⊢ (dom
𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}} ∈ Fin) |
| 64 | | hashcl 13147 |
. . . . . . . . . . 11
⊢ ({𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}} ∈ Fin → (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}) ∈
ℕ0) |
| 65 | 38, 63, 64 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝐸 ∈ Fin →
(#‘{𝑖 ∈ dom
𝐸 ∣ (𝐸‘𝑖) = {𝑁}}) ∈
ℕ0) |
| 66 | 65 | nn0cnd 11353 |
. . . . . . . . 9
⊢ (𝐸 ∈ Fin →
(#‘{𝑖 ∈ dom
𝐸 ∣ (𝐸‘𝑖) = {𝑁}}) ∈ ℂ) |
| 67 | 66 | adantl 482 |
. . . . . . . 8
⊢ ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) →
(#‘{𝑖 ∈ dom
𝐸 ∣ (𝐸‘𝑖) = {𝑁}}) ∈ ℂ) |
| 68 | 58, 62, 67 | add12d 10262 |
. . . . . . 7
⊢ ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) →
(Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + ((#‘𝐽) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) = ((#‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})))) |
| 69 | 68 | adantl 482 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + ((#‘𝐽) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) = ((#‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})))) |
| 70 | 1, 2, 3, 4, 5, 6, 7 | finsumvtxdg2ssteplem3 26443 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (#‘𝐽)) |
| 71 | 70 | oveq2d 6666 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((#‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) = ((#‘𝐽) + (#‘𝐽))) |
| 72 | 61 | 2timesd 11275 |
. . . . . . . 8
⊢ (𝐸 ∈ Fin → (2 ·
(#‘𝐽)) =
((#‘𝐽) +
(#‘𝐽))) |
| 73 | 72 | eqcomd 2628 |
. . . . . . 7
⊢ (𝐸 ∈ Fin →
((#‘𝐽) +
(#‘𝐽)) = (2 ·
(#‘𝐽))) |
| 74 | 73 | ad2antll 765 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((#‘𝐽) + (#‘𝐽)) = (2 · (#‘𝐽))) |
| 75 | 69, 71, 74 | 3eqtrd 2660 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + ((#‘𝐽) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) = (2 · (#‘𝐽))) |
| 76 | 75 | oveq2d 6666 |
. . . 4
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((2 ·
(#‘𝑃)) +
(Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + ((#‘𝐽) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})))) = ((2 · (#‘𝑃)) + (2 · (#‘𝐽)))) |
| 77 | | 2cnd 11093 |
. . . . . . 7
⊢ (𝐸 ∈ Fin → 2 ∈
ℂ) |
| 78 | 5, 15 | syl5eqel 2705 |
. . . . . . . . 9
⊢ (𝐸 ∈ Fin → 𝑃 ∈ Fin) |
| 79 | | hashcl 13147 |
. . . . . . . . 9
⊢ (𝑃 ∈ Fin →
(#‘𝑃) ∈
ℕ0) |
| 80 | 78, 79 | syl 17 |
. . . . . . . 8
⊢ (𝐸 ∈ Fin →
(#‘𝑃) ∈
ℕ0) |
| 81 | 80 | nn0cnd 11353 |
. . . . . . 7
⊢ (𝐸 ∈ Fin →
(#‘𝑃) ∈
ℂ) |
| 82 | 77, 81 | mulcld 10060 |
. . . . . 6
⊢ (𝐸 ∈ Fin → (2 ·
(#‘𝑃)) ∈
ℂ) |
| 83 | 82 | ad2antll 765 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 ·
(#‘𝑃)) ∈
ℂ) |
| 84 | 58 | adantl 482 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) ∈ ℂ) |
| 85 | 61, 66 | addcld 10059 |
. . . . . 6
⊢ (𝐸 ∈ Fin →
((#‘𝐽) +
(#‘{𝑖 ∈ dom
𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) ∈ ℂ) |
| 86 | 85 | ad2antll 765 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((#‘𝐽) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) ∈ ℂ) |
| 87 | 83, 84, 86 | addassd 10062 |
. . . 4
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (((2 ·
(#‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)})) + ((#‘𝐽) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) = ((2 · (#‘𝑃)) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + ((#‘𝐽) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))))) |
| 88 | | 2cnd 11093 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 2 ∈
ℂ) |
| 89 | 81 | ad2antll 765 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (#‘𝑃) ∈
ℂ) |
| 90 | 61 | ad2antll 765 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (#‘𝐽) ∈
ℂ) |
| 91 | 88, 89, 90 | adddid 10064 |
. . . 4
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 ·
((#‘𝑃) +
(#‘𝐽))) = ((2
· (#‘𝑃)) + (2
· (#‘𝐽)))) |
| 92 | 76, 87, 91 | 3eqtr4d 2666 |
. . 3
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (((2 ·
(#‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)})) + ((#‘𝐽) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) = (2 · ((#‘𝑃) + (#‘𝐽)))) |
| 93 | 92 | adantr 481 |
. 2
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (#‘𝑃))) → (((2 · (#‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)})) + ((#‘𝐽) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) = (2 · ((#‘𝑃) + (#‘𝐽)))) |
| 94 | 55, 93 | eqtrd 2656 |
1
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (#‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((#‘𝐽) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) = (2 · ((#‘𝑃) + (#‘𝐽)))) |