MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem6 Structured version   Visualization version   GIF version

Theorem wlkp1lem6 26575
Description: Lemma for wlkp1 26578. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵 ∈ V)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (#‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
wlkp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
wlkp1.s (𝜑 → (Vtx‘𝑆) = 𝑉)
Assertion
Ref Expression
wlkp1lem6 (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))))
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝑃(𝑘)   𝑄(𝑘)   𝑆(𝑘)   𝐸(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝐼(𝑘)   𝑁(𝑘)   𝑉(𝑘)

Proof of Theorem wlkp1lem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wlkp1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 wlkp1.i . . . 4 𝐼 = (iEdg‘𝐺)
3 wlkp1.f . . . 4 (𝜑 → Fun 𝐼)
4 wlkp1.a . . . 4 (𝜑𝐼 ∈ Fin)
5 wlkp1.b . . . 4 (𝜑𝐵 ∈ V)
6 wlkp1.c . . . 4 (𝜑𝐶𝑉)
7 wlkp1.d . . . 4 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 wlkp1.w . . . 4 (𝜑𝐹(Walks‘𝐺)𝑃)
9 wlkp1.n . . . 4 𝑁 = (#‘𝐹)
10 wlkp1.e . . . 4 (𝜑𝐸 ∈ (Edg‘𝐺))
11 wlkp1.x . . . 4 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
12 wlkp1.u . . . 4 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
13 wlkp1.h . . . 4 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
14 wlkp1.q . . . 4 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
15 wlkp1.s . . . 4 (𝜑 → (Vtx‘𝑆) = 𝑉)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem5 26574 . . 3 (𝜑 → ∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥))
17 elfzofz 12485 . . . . . . 7 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (0...𝑁))
1817adantl 482 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁))
19 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑘 → (𝑄𝑥) = (𝑄𝑘))
20 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑘 → (𝑃𝑥) = (𝑃𝑘))
2119, 20eqeq12d 2637 . . . . . . 7 (𝑥 = 𝑘 → ((𝑄𝑥) = (𝑃𝑥) ↔ (𝑄𝑘) = (𝑃𝑘)))
2221rspcv 3305 . . . . . 6 (𝑘 ∈ (0...𝑁) → (∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥) → (𝑄𝑘) = (𝑃𝑘)))
2318, 22syl 17 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → (∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥) → (𝑄𝑘) = (𝑃𝑘)))
2423imp 445 . . . 4 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ ∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥)) → (𝑄𝑘) = (𝑃𝑘))
25 fzofzp1 12565 . . . . . . 7 (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁))
2625adantl 482 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁))
27 fveq2 6191 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝑄𝑥) = (𝑄‘(𝑘 + 1)))
28 fveq2 6191 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝑃𝑥) = (𝑃‘(𝑘 + 1)))
2927, 28eqeq12d 2637 . . . . . . 7 (𝑥 = (𝑘 + 1) → ((𝑄𝑥) = (𝑃𝑥) ↔ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))))
3029rspcv 3305 . . . . . 6 ((𝑘 + 1) ∈ (0...𝑁) → (∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥) → (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))))
3126, 30syl 17 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → (∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥) → (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))))
3231imp 445 . . . 4 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ ∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥)) → (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
3312adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
3413fveq1i 6192 . . . . . . . 8 (𝐻𝑘) = ((𝐹 ∪ {⟨𝑁, 𝐵⟩})‘𝑘)
35 fzonel 12483 . . . . . . . . . . . . . 14 ¬ 𝑁 ∈ (0..^𝑁)
36 eleq1 2689 . . . . . . . . . . . . . 14 (𝑁 = 𝑘 → (𝑁 ∈ (0..^𝑁) ↔ 𝑘 ∈ (0..^𝑁)))
3735, 36mtbii 316 . . . . . . . . . . . . 13 (𝑁 = 𝑘 → ¬ 𝑘 ∈ (0..^𝑁))
3837a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑁 = 𝑘 → ¬ 𝑘 ∈ (0..^𝑁)))
3938con2d 129 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ (0..^𝑁) → ¬ 𝑁 = 𝑘))
4039imp 445 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0..^𝑁)) → ¬ 𝑁 = 𝑘)
4140neqned 2801 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁𝑘)
42 fvunsn 6445 . . . . . . . . 9 (𝑁𝑘 → ((𝐹 ∪ {⟨𝑁, 𝐵⟩})‘𝑘) = (𝐹𝑘))
4341, 42syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐹 ∪ {⟨𝑁, 𝐵⟩})‘𝑘) = (𝐹𝑘))
4434, 43syl5eq 2668 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐻𝑘) = (𝐹𝑘))
4533, 44fveq12d 6197 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → ((iEdg‘𝑆)‘(𝐻𝑘)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘(𝐹𝑘)))
469oveq2i 6661 . . . . . . . . . . . . . . . 16 (0..^𝑁) = (0..^(#‘𝐹))
4746eleq2i 2693 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^𝑁) ↔ 𝑘 ∈ (0..^(#‘𝐹)))
482wlkf 26510 . . . . . . . . . . . . . . . . 17 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
498, 48syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ Word dom 𝐼)
50 wrdsymbcl 13318 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ Word dom 𝐼𝑘 ∈ (0..^(#‘𝐹))) → (𝐹𝑘) ∈ dom 𝐼)
5150ex 450 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Word dom 𝐼 → (𝑘 ∈ (0..^(#‘𝐹)) → (𝐹𝑘) ∈ dom 𝐼))
5249, 51syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘 ∈ (0..^(#‘𝐹)) → (𝐹𝑘) ∈ dom 𝐼))
5347, 52syl5bi 232 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 ∈ (0..^𝑁) → (𝐹𝑘) ∈ dom 𝐼))
5453imp 445 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐹𝑘) ∈ dom 𝐼)
55 eleq1 2689 . . . . . . . . . . . . 13 (𝐵 = (𝐹𝑘) → (𝐵 ∈ dom 𝐼 ↔ (𝐹𝑘) ∈ dom 𝐼))
5654, 55syl5ibrcom 237 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐵 = (𝐹𝑘) → 𝐵 ∈ dom 𝐼))
5756con3d 148 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0..^𝑁)) → (¬ 𝐵 ∈ dom 𝐼 → ¬ 𝐵 = (𝐹𝑘)))
5857ex 450 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ (0..^𝑁) → (¬ 𝐵 ∈ dom 𝐼 → ¬ 𝐵 = (𝐹𝑘))))
597, 58mpid 44 . . . . . . . . 9 (𝜑 → (𝑘 ∈ (0..^𝑁) → ¬ 𝐵 = (𝐹𝑘)))
6059imp 445 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → ¬ 𝐵 = (𝐹𝑘))
6160neqned 2801 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐵 ≠ (𝐹𝑘))
62 fvunsn 6445 . . . . . . 7 (𝐵 ≠ (𝐹𝑘) → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘(𝐹𝑘)) = (𝐼‘(𝐹𝑘)))
6361, 62syl 17 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘(𝐹𝑘)) = (𝐼‘(𝐹𝑘)))
6445, 63eqtrd 2656 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘)))
6564adantr 481 . . . 4 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ ∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥)) → ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘)))
6624, 32, 653jca 1242 . . 3 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ ∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥)) → ((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))))
6716, 66mpidan 704 . 2 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))))
6867ralrimiva 2966 1 (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cun 3572  wss 3574  {csn 4177  {cpr 4179  cop 4183   class class class wbr 4653  dom cdm 5114  Fun wfun 5882  cfv 5888  (class class class)co 6650  Fincfn 7955  0cc0 9936  1c1 9937   + caddc 9939  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495
This theorem is referenced by:  wlkp1lem8  26577
  Copyright terms: Public domain W3C validator