MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcco Structured version   Visualization version   GIF version

Theorem xpcco 16823
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpccofval.t 𝑇 = (𝐶 ×c 𝐷)
xpccofval.b 𝐵 = (Base‘𝑇)
xpccofval.k 𝐾 = (Hom ‘𝑇)
xpccofval.o1 · = (comp‘𝐶)
xpccofval.o2 = (comp‘𝐷)
xpccofval.o 𝑂 = (comp‘𝑇)
xpcco.x (𝜑𝑋𝐵)
xpcco.y (𝜑𝑌𝐵)
xpcco.z (𝜑𝑍𝐵)
xpcco.f (𝜑𝐹 ∈ (𝑋𝐾𝑌))
xpcco.g (𝜑𝐺 ∈ (𝑌𝐾𝑍))
Assertion
Ref Expression
xpcco (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩)

Proof of Theorem xpcco
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpccofval.t . . 3 𝑇 = (𝐶 ×c 𝐷)
2 xpccofval.b . . 3 𝐵 = (Base‘𝑇)
3 xpccofval.k . . 3 𝐾 = (Hom ‘𝑇)
4 xpccofval.o1 . . 3 · = (comp‘𝐶)
5 xpccofval.o2 . . 3 = (comp‘𝐷)
6 xpccofval.o . . 3 𝑂 = (comp‘𝑇)
71, 2, 3, 4, 5, 6xpccofval 16822 . 2 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩))
8 xpcco.x . . . 4 (𝜑𝑋𝐵)
9 xpcco.y . . . 4 (𝜑𝑌𝐵)
10 opelxpi 5148 . . . 4 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
118, 9, 10syl2anc 693 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
12 xpcco.z . . . 4 (𝜑𝑍𝐵)
1312adantr 481 . . 3 ((𝜑𝑥 = ⟨𝑋, 𝑌⟩) → 𝑍𝐵)
14 ovex 6678 . . . . 5 ((2nd𝑥)𝐾𝑦) ∈ V
15 fvex 6201 . . . . 5 (𝐾𝑥) ∈ V
1614, 15mpt2ex 7247 . . . 4 (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩) ∈ V
1716a1i 11 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩) ∈ V)
18 xpcco.g . . . . . 6 (𝜑𝐺 ∈ (𝑌𝐾𝑍))
1918adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝐺 ∈ (𝑌𝐾𝑍))
20 simprl 794 . . . . . . . 8 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝑥 = ⟨𝑋, 𝑌⟩)
2120fveq2d 6195 . . . . . . 7 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (2nd𝑥) = (2nd ‘⟨𝑋, 𝑌⟩))
22 op2ndg 7181 . . . . . . . . 9 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
238, 9, 22syl2anc 693 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2423adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2521, 24eqtrd 2656 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (2nd𝑥) = 𝑌)
26 simprr 796 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝑦 = 𝑍)
2725, 26oveq12d 6668 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → ((2nd𝑥)𝐾𝑦) = (𝑌𝐾𝑍))
2819, 27eleqtrrd 2704 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝐺 ∈ ((2nd𝑥)𝐾𝑦))
29 xpcco.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐾𝑌))
3029adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝐹 ∈ (𝑋𝐾𝑌))
3120fveq2d 6195 . . . . . . 7 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (𝐾𝑥) = (𝐾‘⟨𝑋, 𝑌⟩))
32 df-ov 6653 . . . . . . 7 (𝑋𝐾𝑌) = (𝐾‘⟨𝑋, 𝑌⟩)
3331, 32syl6eqr 2674 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (𝐾𝑥) = (𝑋𝐾𝑌))
3430, 33eleqtrrd 2704 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝐹 ∈ (𝐾𝑥))
3534adantr 481 . . . 4 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ 𝑔 = 𝐺) → 𝐹 ∈ (𝐾𝑥))
36 opex 4932 . . . . 5 ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩ ∈ V
3736a1i 11 . . . 4 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩ ∈ V)
3820fveq2d 6195 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (1st𝑥) = (1st ‘⟨𝑋, 𝑌⟩))
39 op1stg 7180 . . . . . . . . . . . . 13 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
408, 9, 39syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
4140adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
4238, 41eqtrd 2656 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (1st𝑥) = 𝑋)
4342adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑥) = 𝑋)
4443fveq2d 6195 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st ‘(1st𝑥)) = (1st𝑋))
4525adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑥) = 𝑌)
4645fveq2d 6195 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st ‘(2nd𝑥)) = (1st𝑌))
4744, 46opeq12d 4410 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ = ⟨(1st𝑋), (1st𝑌)⟩)
48 simplrr 801 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑦 = 𝑍)
4948fveq2d 6195 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑦) = (1st𝑍))
5047, 49oveq12d 6668 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦)) = (⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍)))
51 simprl 794 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
5251fveq2d 6195 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑔) = (1st𝐺))
53 simprr 796 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
5453fveq2d 6195 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑓) = (1st𝐹))
5550, 52, 54oveq123d 6671 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)) = ((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)))
5643fveq2d 6195 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd ‘(1st𝑥)) = (2nd𝑋))
5745fveq2d 6195 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd ‘(2nd𝑥)) = (2nd𝑌))
5856, 57opeq12d 4410 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ = ⟨(2nd𝑋), (2nd𝑌)⟩)
5948fveq2d 6195 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑦) = (2nd𝑍))
6058, 59oveq12d 6668 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦)) = (⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍)))
6151fveq2d 6195 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑔) = (2nd𝐺))
6253fveq2d 6195 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑓) = (2nd𝐹))
6360, 61, 62oveq123d 6671 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓)) = ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹)))
6455, 63opeq12d 4410 . . . 4 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩ = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩)
6528, 35, 37, 64ovmpt2dv2 6794 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → ((⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩) → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩))
6611, 13, 17, 65ovmpt2dv 6793 . 2 (𝜑 → (𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩)) → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩))
677, 66mpi 20 1 (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183   × cxp 5112  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  Basecbs 15857  Hom chom 15952  compcco 15953   ×c cxpc 16808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-xpc 16812
This theorem is referenced by:  xpcco1st  16824  xpcco2nd  16825  xpcco2  16827  xpccatid  16828
  Copyright terms: Public domain W3C validator