MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcpropd Structured version   Visualization version   GIF version

Theorem xpcpropd 16848
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same product category. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
xpcpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
xpcpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
xpcpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
xpcpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
xpcpropd.a (𝜑𝐴𝑉)
xpcpropd.b (𝜑𝐵𝑉)
xpcpropd.c (𝜑𝐶𝑉)
xpcpropd.d (𝜑𝐷𝑉)
Assertion
Ref Expression
xpcpropd (𝜑 → (𝐴 ×c 𝐶) = (𝐵 ×c 𝐷))

Proof of Theorem xpcpropd
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (𝐴 ×c 𝐶) = (𝐴 ×c 𝐶)
2 eqid 2622 . . 3 (Base‘𝐴) = (Base‘𝐴)
3 eqid 2622 . . 3 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2622 . . 3 (Hom ‘𝐴) = (Hom ‘𝐴)
5 eqid 2622 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2622 . . 3 (comp‘𝐴) = (comp‘𝐴)
7 eqid 2622 . . 3 (comp‘𝐶) = (comp‘𝐶)
8 xpcpropd.a . . 3 (𝜑𝐴𝑉)
9 xpcpropd.c . . 3 (𝜑𝐶𝑉)
10 eqidd 2623 . . 3 (𝜑 → ((Base‘𝐴) × (Base‘𝐶)) = ((Base‘𝐴) × (Base‘𝐶)))
111, 2, 3xpcbas 16818 . . . . 5 ((Base‘𝐴) × (Base‘𝐶)) = (Base‘(𝐴 ×c 𝐶))
12 eqid 2622 . . . . 5 (Hom ‘(𝐴 ×c 𝐶)) = (Hom ‘(𝐴 ×c 𝐶))
131, 11, 4, 5, 12xpchomfval 16819 . . . 4 (Hom ‘(𝐴 ×c 𝐶)) = (𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)), 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (((1st𝑢)(Hom ‘𝐴)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐶)(2nd𝑣))))
1413a1i 11 . . 3 (𝜑 → (Hom ‘(𝐴 ×c 𝐶)) = (𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)), 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (((1st𝑢)(Hom ‘𝐴)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐶)(2nd𝑣)))))
15 eqidd 2623 . . 3 (𝜑 → (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))), 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))), 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩)))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15xpcval 16817 . 2 (𝜑 → (𝐴 ×c 𝐶) = {⟨(Base‘ndx), ((Base‘𝐴) × (Base‘𝐶))⟩, ⟨(Hom ‘ndx), (Hom ‘(𝐴 ×c 𝐶))⟩, ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))), 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩))⟩})
17 eqid 2622 . . 3 (𝐵 ×c 𝐷) = (𝐵 ×c 𝐷)
18 eqid 2622 . . 3 (Base‘𝐵) = (Base‘𝐵)
19 eqid 2622 . . 3 (Base‘𝐷) = (Base‘𝐷)
20 eqid 2622 . . 3 (Hom ‘𝐵) = (Hom ‘𝐵)
21 eqid 2622 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
22 eqid 2622 . . 3 (comp‘𝐵) = (comp‘𝐵)
23 eqid 2622 . . 3 (comp‘𝐷) = (comp‘𝐷)
24 xpcpropd.b . . 3 (𝜑𝐵𝑉)
25 xpcpropd.d . . 3 (𝜑𝐷𝑉)
26 xpcpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
2726homfeqbas 16356 . . . 4 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
28 xpcpropd.3 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
2928homfeqbas 16356 . . . 4 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
3027, 29xpeq12d 5140 . . 3 (𝜑 → ((Base‘𝐴) × (Base‘𝐶)) = ((Base‘𝐵) × (Base‘𝐷)))
31263ad2ant1 1082 . . . . . . 7 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (Homf𝐴) = (Homf𝐵))
32 xp1st 7198 . . . . . . . 8 (𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) → (1st𝑢) ∈ (Base‘𝐴))
33323ad2ant2 1083 . . . . . . 7 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (1st𝑢) ∈ (Base‘𝐴))
34 xp1st 7198 . . . . . . . 8 (𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶)) → (1st𝑣) ∈ (Base‘𝐴))
35343ad2ant3 1084 . . . . . . 7 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (1st𝑣) ∈ (Base‘𝐴))
362, 4, 20, 31, 33, 35homfeqval 16357 . . . . . 6 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → ((1st𝑢)(Hom ‘𝐴)(1st𝑣)) = ((1st𝑢)(Hom ‘𝐵)(1st𝑣)))
37283ad2ant1 1082 . . . . . . 7 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (Homf𝐶) = (Homf𝐷))
38 xp2nd 7199 . . . . . . . 8 (𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) → (2nd𝑢) ∈ (Base‘𝐶))
39383ad2ant2 1083 . . . . . . 7 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (2nd𝑢) ∈ (Base‘𝐶))
40 xp2nd 7199 . . . . . . . 8 (𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶)) → (2nd𝑣) ∈ (Base‘𝐶))
41403ad2ant3 1084 . . . . . . 7 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (2nd𝑣) ∈ (Base‘𝐶))
423, 5, 21, 37, 39, 41homfeqval 16357 . . . . . 6 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → ((2nd𝑢)(Hom ‘𝐶)(2nd𝑣)) = ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))
4336, 42xpeq12d 5140 . . . . 5 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (((1st𝑢)(Hom ‘𝐴)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐶)(2nd𝑣))) = (((1st𝑢)(Hom ‘𝐵)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))
4443mpt2eq3dva 6719 . . . 4 (𝜑 → (𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)), 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (((1st𝑢)(Hom ‘𝐴)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐶)(2nd𝑣)))) = (𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)), 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (((1st𝑢)(Hom ‘𝐵)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))))
4513, 44syl5eq 2668 . . 3 (𝜑 → (Hom ‘(𝐴 ×c 𝐶)) = (𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)), 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (((1st𝑢)(Hom ‘𝐵)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))))
4626ad4antr 768 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (Homf𝐴) = (Homf𝐵))
47 xpcpropd.2 . . . . . . . . . 10 (𝜑 → (compf𝐴) = (compf𝐵))
4847ad4antr 768 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (compf𝐴) = (compf𝐵))
49 simp-4r 807 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → 𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))))
50 xp1st 7198 . . . . . . . . . . 11 (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))) → (1st𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)))
5149, 50syl 17 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (1st𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)))
52 xp1st 7198 . . . . . . . . . 10 ((1st𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)) → (1st ‘(1st𝑥)) ∈ (Base‘𝐴))
5351, 52syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (1st ‘(1st𝑥)) ∈ (Base‘𝐴))
54 xp2nd 7199 . . . . . . . . . . 11 (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))) → (2nd𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)))
5549, 54syl 17 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (2nd𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)))
56 xp1st 7198 . . . . . . . . . 10 ((2nd𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)) → (1st ‘(2nd𝑥)) ∈ (Base‘𝐴))
5755, 56syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (1st ‘(2nd𝑥)) ∈ (Base‘𝐴))
58 simpllr 799 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)))
59 xp1st 7198 . . . . . . . . . 10 (𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) → (1st𝑦) ∈ (Base‘𝐴))
6058, 59syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (1st𝑦) ∈ (Base‘𝐴))
61 simpr 477 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥))
62 1st2nd2 7205 . . . . . . . . . . . . . . 15 (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6349, 62syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6463fveq2d 6195 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) = ((Hom ‘(𝐴 ×c 𝐶))‘⟨(1st𝑥), (2nd𝑥)⟩))
65 df-ov 6653 . . . . . . . . . . . . 13 ((1st𝑥)(Hom ‘(𝐴 ×c 𝐶))(2nd𝑥)) = ((Hom ‘(𝐴 ×c 𝐶))‘⟨(1st𝑥), (2nd𝑥)⟩)
6664, 65syl6eqr 2674 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) = ((1st𝑥)(Hom ‘(𝐴 ×c 𝐶))(2nd𝑥)))
671, 11, 4, 5, 12, 51, 55xpchom 16820 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ((1st𝑥)(Hom ‘(𝐴 ×c 𝐶))(2nd𝑥)) = (((1st ‘(1st𝑥))(Hom ‘𝐴)(1st ‘(2nd𝑥))) × ((2nd ‘(1st𝑥))(Hom ‘𝐶)(2nd ‘(2nd𝑥)))))
6866, 67eqtrd 2656 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) = (((1st ‘(1st𝑥))(Hom ‘𝐴)(1st ‘(2nd𝑥))) × ((2nd ‘(1st𝑥))(Hom ‘𝐶)(2nd ‘(2nd𝑥)))))
6961, 68eleqtrd 2703 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → 𝑓 ∈ (((1st ‘(1st𝑥))(Hom ‘𝐴)(1st ‘(2nd𝑥))) × ((2nd ‘(1st𝑥))(Hom ‘𝐶)(2nd ‘(2nd𝑥)))))
70 xp1st 7198 . . . . . . . . . 10 (𝑓 ∈ (((1st ‘(1st𝑥))(Hom ‘𝐴)(1st ‘(2nd𝑥))) × ((2nd ‘(1st𝑥))(Hom ‘𝐶)(2nd ‘(2nd𝑥)))) → (1st𝑓) ∈ ((1st ‘(1st𝑥))(Hom ‘𝐴)(1st ‘(2nd𝑥))))
7169, 70syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (1st𝑓) ∈ ((1st ‘(1st𝑥))(Hom ‘𝐴)(1st ‘(2nd𝑥))))
72 simplr 792 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦))
731, 11, 4, 5, 12, 55, 58xpchom 16820 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦) = (((1st ‘(2nd𝑥))(Hom ‘𝐴)(1st𝑦)) × ((2nd ‘(2nd𝑥))(Hom ‘𝐶)(2nd𝑦))))
7472, 73eleqtrd 2703 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → 𝑔 ∈ (((1st ‘(2nd𝑥))(Hom ‘𝐴)(1st𝑦)) × ((2nd ‘(2nd𝑥))(Hom ‘𝐶)(2nd𝑦))))
75 xp1st 7198 . . . . . . . . . 10 (𝑔 ∈ (((1st ‘(2nd𝑥))(Hom ‘𝐴)(1st𝑦)) × ((2nd ‘(2nd𝑥))(Hom ‘𝐶)(2nd𝑦))) → (1st𝑔) ∈ ((1st ‘(2nd𝑥))(Hom ‘𝐴)(1st𝑦)))
7674, 75syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (1st𝑔) ∈ ((1st ‘(2nd𝑥))(Hom ‘𝐴)(1st𝑦)))
772, 4, 6, 22, 46, 48, 53, 57, 60, 71, 76comfeqval 16368 . . . . . . . 8 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)) = ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐵)(1st𝑦))(1st𝑓)))
7828ad4antr 768 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (Homf𝐶) = (Homf𝐷))
79 xpcpropd.4 . . . . . . . . . 10 (𝜑 → (compf𝐶) = (compf𝐷))
8079ad4antr 768 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (compf𝐶) = (compf𝐷))
81 xp2nd 7199 . . . . . . . . . 10 ((1st𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)) → (2nd ‘(1st𝑥)) ∈ (Base‘𝐶))
8251, 81syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (2nd ‘(1st𝑥)) ∈ (Base‘𝐶))
83 xp2nd 7199 . . . . . . . . . 10 ((2nd𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)) → (2nd ‘(2nd𝑥)) ∈ (Base‘𝐶))
8455, 83syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (2nd ‘(2nd𝑥)) ∈ (Base‘𝐶))
85 xp2nd 7199 . . . . . . . . . 10 (𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) → (2nd𝑦) ∈ (Base‘𝐶))
8658, 85syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (2nd𝑦) ∈ (Base‘𝐶))
87 xp2nd 7199 . . . . . . . . . 10 (𝑓 ∈ (((1st ‘(1st𝑥))(Hom ‘𝐴)(1st ‘(2nd𝑥))) × ((2nd ‘(1st𝑥))(Hom ‘𝐶)(2nd ‘(2nd𝑥)))) → (2nd𝑓) ∈ ((2nd ‘(1st𝑥))(Hom ‘𝐶)(2nd ‘(2nd𝑥))))
8869, 87syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (2nd𝑓) ∈ ((2nd ‘(1st𝑥))(Hom ‘𝐶)(2nd ‘(2nd𝑥))))
89 xp2nd 7199 . . . . . . . . . 10 (𝑔 ∈ (((1st ‘(2nd𝑥))(Hom ‘𝐴)(1st𝑦)) × ((2nd ‘(2nd𝑥))(Hom ‘𝐶)(2nd𝑦))) → (2nd𝑔) ∈ ((2nd ‘(2nd𝑥))(Hom ‘𝐶)(2nd𝑦)))
9074, 89syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (2nd𝑔) ∈ ((2nd ‘(2nd𝑥))(Hom ‘𝐶)(2nd𝑦)))
913, 5, 7, 23, 78, 80, 82, 84, 86, 88, 90comfeqval 16368 . . . . . . . 8 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓)) = ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓)))
9277, 91opeq12d 4410 . . . . . . 7 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩ = ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐵)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩)
93923impa 1259 . . . . . 6 ((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩ = ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐵)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩)
9493mpt2eq3dva 6719 . . . . 5 (((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩) = (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐵)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩))
95943impa 1259 . . . 4 ((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩) = (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐵)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩))
9695mpt2eq3dva 6719 . . 3 (𝜑 → (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))), 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))), 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐵)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩)))
9717, 18, 19, 20, 21, 22, 23, 24, 25, 30, 45, 96xpcval 16817 . 2 (𝜑 → (𝐵 ×c 𝐷) = {⟨(Base‘ndx), ((Base‘𝐴) × (Base‘𝐶))⟩, ⟨(Hom ‘ndx), (Hom ‘(𝐴 ×c 𝐶))⟩, ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))), 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩))⟩})
9816, 97eqtr4d 2659 1 (𝜑 → (𝐴 ×c 𝐶) = (𝐵 ×c 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  {ctp 4181  cop 4183   × cxp 5112  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  ndxcnx 15854  Basecbs 15857  Hom chom 15952  compcco 15953  Homf chomf 16327  compfccomf 16328   ×c cxpc 16808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-homf 16331  df-comf 16332  df-xpc 16812
This theorem is referenced by:  curfpropd  16873  oppchofcl  16900
  Copyright terms: Public domain W3C validator