MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcpropd Structured version   Visualization version   Unicode version

Theorem xpcpropd 16848
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same product category. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
xpcpropd.1  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
xpcpropd.2  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
xpcpropd.3  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
xpcpropd.4  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
xpcpropd.a  |-  ( ph  ->  A  e.  V )
xpcpropd.b  |-  ( ph  ->  B  e.  V )
xpcpropd.c  |-  ( ph  ->  C  e.  V )
xpcpropd.d  |-  ( ph  ->  D  e.  V )
Assertion
Ref Expression
xpcpropd  |-  ( ph  ->  ( A  X.c  C )  =  ( B  X.c  D
) )

Proof of Theorem xpcpropd
Dummy variables  f 
g  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( A  X.c  C )  =  ( A  X.c  C )
2 eqid 2622 . . 3  |-  ( Base `  A )  =  (
Base `  A )
3 eqid 2622 . . 3  |-  ( Base `  C )  =  (
Base `  C )
4 eqid 2622 . . 3  |-  ( Hom  `  A )  =  ( Hom  `  A )
5 eqid 2622 . . 3  |-  ( Hom  `  C )  =  ( Hom  `  C )
6 eqid 2622 . . 3  |-  (comp `  A )  =  (comp `  A )
7 eqid 2622 . . 3  |-  (comp `  C )  =  (comp `  C )
8 xpcpropd.a . . 3  |-  ( ph  ->  A  e.  V )
9 xpcpropd.c . . 3  |-  ( ph  ->  C  e.  V )
10 eqidd 2623 . . 3  |-  ( ph  ->  ( ( Base `  A
)  X.  ( Base `  C ) )  =  ( ( Base `  A
)  X.  ( Base `  C ) ) )
111, 2, 3xpcbas 16818 . . . . 5  |-  ( (
Base `  A )  X.  ( Base `  C
) )  =  (
Base `  ( A  X.c  C ) )
12 eqid 2622 . . . . 5  |-  ( Hom  `  ( A  X.c  C ) )  =  ( Hom  `  ( A  X.c  C ) )
131, 11, 4, 5, 12xpchomfval 16819 . . . 4  |-  ( Hom  `  ( A  X.c  C ) )  =  ( u  e.  ( ( Base `  A )  X.  ( Base `  C ) ) ,  v  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  |->  ( ( ( 1st `  u
) ( Hom  `  A
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  C
) ( 2nd `  v
) ) ) )
1413a1i 11 . . 3  |-  ( ph  ->  ( Hom  `  ( A  X.c  C ) )  =  ( u  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) ,  v  e.  ( (
Base `  A )  X.  ( Base `  C
) )  |->  ( ( ( 1st `  u
) ( Hom  `  A
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  C
) ( 2nd `  v
) ) ) ) )
15 eqidd 2623 . . 3  |-  ( ph  ->  ( x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) ,  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  ( A  X.c  C ) ) y ) ,  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  A )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  C )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) )  =  ( x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) ,  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  ( A  X.c  C ) ) y ) ,  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  A )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  C )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) ) )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15xpcval 16817 . 2  |-  ( ph  ->  ( A  X.c  C )  =  { <. ( Base `  ndx ) ,  ( ( Base `  A
)  X.  ( Base `  C ) ) >. ,  <. ( Hom  `  ndx ) ,  ( Hom  `  ( A  X.c  C ) ) >. ,  <. (comp ` 
ndx ) ,  ( x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) ,  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  ( A  X.c  C ) ) y ) ,  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  A )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  C )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) ) >. } )
17 eqid 2622 . . 3  |-  ( B  X.c  D )  =  ( B  X.c  D )
18 eqid 2622 . . 3  |-  ( Base `  B )  =  (
Base `  B )
19 eqid 2622 . . 3  |-  ( Base `  D )  =  (
Base `  D )
20 eqid 2622 . . 3  |-  ( Hom  `  B )  =  ( Hom  `  B )
21 eqid 2622 . . 3  |-  ( Hom  `  D )  =  ( Hom  `  D )
22 eqid 2622 . . 3  |-  (comp `  B )  =  (comp `  B )
23 eqid 2622 . . 3  |-  (comp `  D )  =  (comp `  D )
24 xpcpropd.b . . 3  |-  ( ph  ->  B  e.  V )
25 xpcpropd.d . . 3  |-  ( ph  ->  D  e.  V )
26 xpcpropd.1 . . . . 5  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
2726homfeqbas 16356 . . . 4  |-  ( ph  ->  ( Base `  A
)  =  ( Base `  B ) )
28 xpcpropd.3 . . . . 5  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
2928homfeqbas 16356 . . . 4  |-  ( ph  ->  ( Base `  C
)  =  ( Base `  D ) )
3027, 29xpeq12d 5140 . . 3  |-  ( ph  ->  ( ( Base `  A
)  X.  ( Base `  C ) )  =  ( ( Base `  B
)  X.  ( Base `  D ) ) )
31263ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  /\  v  e.  ( ( Base `  A )  X.  ( Base `  C
) ) )  -> 
( Hom f  `  A )  =  ( Hom f  `  B ) )
32 xp1st 7198 . . . . . . . 8  |-  ( u  e.  ( ( Base `  A )  X.  ( Base `  C ) )  ->  ( 1st `  u
)  e.  ( Base `  A ) )
33323ad2ant2 1083 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  /\  v  e.  ( ( Base `  A )  X.  ( Base `  C
) ) )  -> 
( 1st `  u
)  e.  ( Base `  A ) )
34 xp1st 7198 . . . . . . . 8  |-  ( v  e.  ( ( Base `  A )  X.  ( Base `  C ) )  ->  ( 1st `  v
)  e.  ( Base `  A ) )
35343ad2ant3 1084 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  /\  v  e.  ( ( Base `  A )  X.  ( Base `  C
) ) )  -> 
( 1st `  v
)  e.  ( Base `  A ) )
362, 4, 20, 31, 33, 35homfeqval 16357 . . . . . 6  |-  ( (
ph  /\  u  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  /\  v  e.  ( ( Base `  A )  X.  ( Base `  C
) ) )  -> 
( ( 1st `  u
) ( Hom  `  A
) ( 1st `  v
) )  =  ( ( 1st `  u
) ( Hom  `  B
) ( 1st `  v
) ) )
37283ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  /\  v  e.  ( ( Base `  A )  X.  ( Base `  C
) ) )  -> 
( Hom f  `  C )  =  ( Hom f  `  D ) )
38 xp2nd 7199 . . . . . . . 8  |-  ( u  e.  ( ( Base `  A )  X.  ( Base `  C ) )  ->  ( 2nd `  u
)  e.  ( Base `  C ) )
39383ad2ant2 1083 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  /\  v  e.  ( ( Base `  A )  X.  ( Base `  C
) ) )  -> 
( 2nd `  u
)  e.  ( Base `  C ) )
40 xp2nd 7199 . . . . . . . 8  |-  ( v  e.  ( ( Base `  A )  X.  ( Base `  C ) )  ->  ( 2nd `  v
)  e.  ( Base `  C ) )
41403ad2ant3 1084 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  /\  v  e.  ( ( Base `  A )  X.  ( Base `  C
) ) )  -> 
( 2nd `  v
)  e.  ( Base `  C ) )
423, 5, 21, 37, 39, 41homfeqval 16357 . . . . . 6  |-  ( (
ph  /\  u  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  /\  v  e.  ( ( Base `  A )  X.  ( Base `  C
) ) )  -> 
( ( 2nd `  u
) ( Hom  `  C
) ( 2nd `  v
) )  =  ( ( 2nd `  u
) ( Hom  `  D
) ( 2nd `  v
) ) )
4336, 42xpeq12d 5140 . . . . 5  |-  ( (
ph  /\  u  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  /\  v  e.  ( ( Base `  A )  X.  ( Base `  C
) ) )  -> 
( ( ( 1st `  u ) ( Hom  `  A ) ( 1st `  v ) )  X.  ( ( 2nd `  u
) ( Hom  `  C
) ( 2nd `  v
) ) )  =  ( ( ( 1st `  u ) ( Hom  `  B ) ( 1st `  v ) )  X.  ( ( 2nd `  u
) ( Hom  `  D
) ( 2nd `  v
) ) ) )
4443mpt2eq3dva 6719 . . . 4  |-  ( ph  ->  ( u  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) ,  v  e.  ( (
Base `  A )  X.  ( Base `  C
) )  |->  ( ( ( 1st `  u
) ( Hom  `  A
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  C
) ( 2nd `  v
) ) ) )  =  ( u  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) ,  v  e.  ( (
Base `  A )  X.  ( Base `  C
) )  |->  ( ( ( 1st `  u
) ( Hom  `  B
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  D
) ( 2nd `  v
) ) ) ) )
4513, 44syl5eq 2668 . . 3  |-  ( ph  ->  ( Hom  `  ( A  X.c  C ) )  =  ( u  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) ,  v  e.  ( (
Base `  A )  X.  ( Base `  C
) )  |->  ( ( ( 1st `  u
) ( Hom  `  B
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  D
) ( 2nd `  v
) ) ) ) )
4626ad4antr 768 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( Hom f  `  A )  =  ( Hom f  `  B ) )
47 xpcpropd.2 . . . . . . . . . 10  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
4847ad4antr 768 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
(compf `  A )  =  (compf `  B ) )
49 simp-4r 807 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  ->  x  e.  ( (
( Base `  A )  X.  ( Base `  C
) )  X.  (
( Base `  A )  X.  ( Base `  C
) ) ) )
50 xp1st 7198 . . . . . . . . . . 11  |-  ( x  e.  ( ( (
Base `  A )  X.  ( Base `  C
) )  X.  (
( Base `  A )  X.  ( Base `  C
) ) )  -> 
( 1st `  x
)  e.  ( (
Base `  A )  X.  ( Base `  C
) ) )
5149, 50syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( 1st `  x
)  e.  ( (
Base `  A )  X.  ( Base `  C
) ) )
52 xp1st 7198 . . . . . . . . . 10  |-  ( ( 1st `  x )  e.  ( ( Base `  A )  X.  ( Base `  C ) )  ->  ( 1st `  ( 1st `  x ) )  e.  ( Base `  A
) )
5351, 52syl 17 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( 1st `  ( 1st `  x ) )  e.  ( Base `  A
) )
54 xp2nd 7199 . . . . . . . . . . 11  |-  ( x  e.  ( ( (
Base `  A )  X.  ( Base `  C
) )  X.  (
( Base `  A )  X.  ( Base `  C
) ) )  -> 
( 2nd `  x
)  e.  ( (
Base `  A )  X.  ( Base `  C
) ) )
5549, 54syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( 2nd `  x
)  e.  ( (
Base `  A )  X.  ( Base `  C
) ) )
56 xp1st 7198 . . . . . . . . . 10  |-  ( ( 2nd `  x )  e.  ( ( Base `  A )  X.  ( Base `  C ) )  ->  ( 1st `  ( 2nd `  x ) )  e.  ( Base `  A
) )
5755, 56syl 17 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( 1st `  ( 2nd `  x ) )  e.  ( Base `  A
) )
58 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
y  e.  ( (
Base `  A )  X.  ( Base `  C
) ) )
59 xp1st 7198 . . . . . . . . . 10  |-  ( y  e.  ( ( Base `  A )  X.  ( Base `  C ) )  ->  ( 1st `  y
)  e.  ( Base `  A ) )
6058, 59syl 17 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( 1st `  y
)  e.  ( Base `  A ) )
61 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )
62 1st2nd2 7205 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( (
Base `  A )  X.  ( Base `  C
) )  X.  (
( Base `  A )  X.  ( Base `  C
) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )
6349, 62syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )
6463fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( ( Hom  `  ( A  X.c  C ) ) `  x )  =  ( ( Hom  `  ( A  X.c  C ) ) `  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
)
65 df-ov 6653 . . . . . . . . . . . . 13  |-  ( ( 1st `  x ) ( Hom  `  ( A  X.c  C ) ) ( 2nd `  x ) )  =  ( ( Hom  `  ( A  X.c  C ) ) `  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
6664, 65syl6eqr 2674 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( ( Hom  `  ( A  X.c  C ) ) `  x )  =  ( ( 1st `  x
) ( Hom  `  ( A  X.c  C ) ) ( 2nd `  x ) ) )
671, 11, 4, 5, 12, 51, 55xpchom 16820 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( ( 1st `  x
) ( Hom  `  ( A  X.c  C ) ) ( 2nd `  x ) )  =  ( ( ( 1st `  ( 1st `  x ) ) ( Hom  `  A
) ( 1st `  ( 2nd `  x ) ) )  X.  ( ( 2nd `  ( 1st `  x ) ) ( Hom  `  C )
( 2nd `  ( 2nd `  x ) ) ) ) )
6866, 67eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( ( Hom  `  ( A  X.c  C ) ) `  x )  =  ( ( ( 1st `  ( 1st `  x ) ) ( Hom  `  A
) ( 1st `  ( 2nd `  x ) ) )  X.  ( ( 2nd `  ( 1st `  x ) ) ( Hom  `  C )
( 2nd `  ( 2nd `  x ) ) ) ) )
6961, 68eleqtrd 2703 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
f  e.  ( ( ( 1st `  ( 1st `  x ) ) ( Hom  `  A
) ( 1st `  ( 2nd `  x ) ) )  X.  ( ( 2nd `  ( 1st `  x ) ) ( Hom  `  C )
( 2nd `  ( 2nd `  x ) ) ) ) )
70 xp1st 7198 . . . . . . . . . 10  |-  ( f  e.  ( ( ( 1st `  ( 1st `  x ) ) ( Hom  `  A )
( 1st `  ( 2nd `  x ) ) )  X.  ( ( 2nd `  ( 1st `  x ) ) ( Hom  `  C )
( 2nd `  ( 2nd `  x ) ) ) )  ->  ( 1st `  f )  e.  ( ( 1st `  ( 1st `  x ) ) ( Hom  `  A
) ( 1st `  ( 2nd `  x ) ) ) )
7169, 70syl 17 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( 1st `  f
)  e.  ( ( 1st `  ( 1st `  x ) ) ( Hom  `  A )
( 1st `  ( 2nd `  x ) ) ) )
72 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
g  e.  ( ( 2nd `  x ) ( Hom  `  ( A  X.c  C ) ) y ) )
731, 11, 4, 5, 12, 55, 58xpchom 16820 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y )  =  ( ( ( 1st `  ( 2nd `  x ) ) ( Hom  `  A
) ( 1st `  y
) )  X.  (
( 2nd `  ( 2nd `  x ) ) ( Hom  `  C
) ( 2nd `  y
) ) ) )
7472, 73eleqtrd 2703 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
g  e.  ( ( ( 1st `  ( 2nd `  x ) ) ( Hom  `  A
) ( 1st `  y
) )  X.  (
( 2nd `  ( 2nd `  x ) ) ( Hom  `  C
) ( 2nd `  y
) ) ) )
75 xp1st 7198 . . . . . . . . . 10  |-  ( g  e.  ( ( ( 1st `  ( 2nd `  x ) ) ( Hom  `  A )
( 1st `  y
) )  X.  (
( 2nd `  ( 2nd `  x ) ) ( Hom  `  C
) ( 2nd `  y
) ) )  -> 
( 1st `  g
)  e.  ( ( 1st `  ( 2nd `  x ) ) ( Hom  `  A )
( 1st `  y
) ) )
7674, 75syl 17 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( 1st `  g
)  e.  ( ( 1st `  ( 2nd `  x ) ) ( Hom  `  A )
( 1st `  y
) ) )
772, 4, 6, 22, 46, 48, 53, 57, 60, 71, 76comfeqval 16368 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  A )
( 1st `  y
) ) ( 1st `  f ) )  =  ( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  B )
( 1st `  y
) ) ( 1st `  f ) ) )
7828ad4antr 768 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( Hom f  `  C )  =  ( Hom f  `  D ) )
79 xpcpropd.4 . . . . . . . . . 10  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
8079ad4antr 768 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
(compf `  C )  =  (compf `  D ) )
81 xp2nd 7199 . . . . . . . . . 10  |-  ( ( 1st `  x )  e.  ( ( Base `  A )  X.  ( Base `  C ) )  ->  ( 2nd `  ( 1st `  x ) )  e.  ( Base `  C
) )
8251, 81syl 17 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( 2nd `  ( 1st `  x ) )  e.  ( Base `  C
) )
83 xp2nd 7199 . . . . . . . . . 10  |-  ( ( 2nd `  x )  e.  ( ( Base `  A )  X.  ( Base `  C ) )  ->  ( 2nd `  ( 2nd `  x ) )  e.  ( Base `  C
) )
8455, 83syl 17 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( 2nd `  ( 2nd `  x ) )  e.  ( Base `  C
) )
85 xp2nd 7199 . . . . . . . . . 10  |-  ( y  e.  ( ( Base `  A )  X.  ( Base `  C ) )  ->  ( 2nd `  y
)  e.  ( Base `  C ) )
8658, 85syl 17 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( 2nd `  y
)  e.  ( Base `  C ) )
87 xp2nd 7199 . . . . . . . . . 10  |-  ( f  e.  ( ( ( 1st `  ( 1st `  x ) ) ( Hom  `  A )
( 1st `  ( 2nd `  x ) ) )  X.  ( ( 2nd `  ( 1st `  x ) ) ( Hom  `  C )
( 2nd `  ( 2nd `  x ) ) ) )  ->  ( 2nd `  f )  e.  ( ( 2nd `  ( 1st `  x ) ) ( Hom  `  C
) ( 2nd `  ( 2nd `  x ) ) ) )
8869, 87syl 17 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( 2nd `  f
)  e.  ( ( 2nd `  ( 1st `  x ) ) ( Hom  `  C )
( 2nd `  ( 2nd `  x ) ) ) )
89 xp2nd 7199 . . . . . . . . . 10  |-  ( g  e.  ( ( ( 1st `  ( 2nd `  x ) ) ( Hom  `  A )
( 1st `  y
) )  X.  (
( 2nd `  ( 2nd `  x ) ) ( Hom  `  C
) ( 2nd `  y
) ) )  -> 
( 2nd `  g
)  e.  ( ( 2nd `  ( 2nd `  x ) ) ( Hom  `  C )
( 2nd `  y
) ) )
9074, 89syl 17 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( 2nd `  g
)  e.  ( ( 2nd `  ( 2nd `  x ) ) ( Hom  `  C )
( 2nd `  y
) ) )
913, 5, 7, 23, 78, 80, 82, 84, 86, 88, 90comfeqval 16368 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  -> 
( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  C )
( 2nd `  y
) ) ( 2nd `  f ) )  =  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  D )
( 2nd `  y
) ) ( 2nd `  f ) ) )
9277, 91opeq12d 4410 . . . . . . 7  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  ->  <. ( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  A )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  C )
( 2nd `  y
) ) ( 2nd `  f ) ) >.  =  <. ( ( 1st `  g ) ( <.
( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  B )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  D )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
)
93923impa 1259 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  ( (
( Base `  A )  X.  ( Base `  C
) )  X.  (
( Base `  A )  X.  ( Base `  C
) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  /\  g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y )  /\  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x ) )  ->  <. ( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  A )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  C )
( 2nd `  y
) ) ( 2nd `  f ) ) >.  =  <. ( ( 1st `  g ) ( <.
( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  B )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  D )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
)
9493mpt2eq3dva 6719 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ( ( Base `  A )  X.  ( Base `  C ) )  X.  ( ( Base `  A )  X.  ( Base `  C ) ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  ->  ( g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) ,  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  A )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  C )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
)  =  ( g  e.  ( ( 2nd `  x ) ( Hom  `  ( A  X.c  C ) ) y ) ,  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  B )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  D )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) )
95943impa 1259 . . . 4  |-  ( (
ph  /\  x  e.  ( ( ( Base `  A )  X.  ( Base `  C ) )  X.  ( ( Base `  A )  X.  ( Base `  C ) ) )  /\  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) ) )  ->  ( g  e.  ( ( 2nd `  x
) ( Hom  `  ( A  X.c  C ) ) y ) ,  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  A )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  C )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
)  =  ( g  e.  ( ( 2nd `  x ) ( Hom  `  ( A  X.c  C ) ) y ) ,  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  B )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  D )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) )
9695mpt2eq3dva 6719 . . 3  |-  ( ph  ->  ( x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) ,  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  ( A  X.c  C ) ) y ) ,  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  A )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  C )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) )  =  ( x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) ,  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  ( A  X.c  C ) ) y ) ,  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  B )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  D )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) ) )
9717, 18, 19, 20, 21, 22, 23, 24, 25, 30, 45, 96xpcval 16817 . 2  |-  ( ph  ->  ( B  X.c  D )  =  { <. ( Base `  ndx ) ,  ( ( Base `  A
)  X.  ( Base `  C ) ) >. ,  <. ( Hom  `  ndx ) ,  ( Hom  `  ( A  X.c  C ) ) >. ,  <. (comp ` 
ndx ) ,  ( x  e.  ( ( ( Base `  A
)  X.  ( Base `  C ) )  X.  ( ( Base `  A
)  X.  ( Base `  C ) ) ) ,  y  e.  ( ( Base `  A
)  X.  ( Base `  C ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  ( A  X.c  C ) ) y ) ,  f  e.  ( ( Hom  `  ( A  X.c  C ) ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  A )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  C )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) ) >. } )
9816, 97eqtr4d 2659 1  |-  ( ph  ->  ( A  X.c  C )  =  ( B  X.c  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {ctp 4181   <.cop 4183    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   ndxcnx 15854   Basecbs 15857   Hom chom 15952  compcco 15953   Hom f chomf 16327  compfccomf 16328    X.c cxpc 16808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-homf 16331  df-comf 16332  df-xpc 16812
This theorem is referenced by:  curfpropd  16873  oppchofcl  16900
  Copyright terms: Public domain W3C validator