| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > yon2 | Structured version Visualization version Unicode version | ||
| Description: Value of the Yoneda embedding at a morphism. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| Ref | Expression |
|---|---|
| yon11.y |
|
| yon11.b |
|
| yon11.c |
|
| yon11.p |
|
| yon11.h |
|
| yon11.z |
|
| yon12.x |
|
| yon12.w |
|
| yon2.f |
|
| yon2.g |
|
| Ref | Expression |
|---|---|
| yon2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | yon11.y |
. . . . . . . . 9
| |
| 2 | yon11.c |
. . . . . . . . 9
| |
| 3 | eqid 2622 |
. . . . . . . . 9
| |
| 4 | eqid 2622 |
. . . . . . . . 9
| |
| 5 | 1, 2, 3, 4 | yonval 16901 |
. . . . . . . 8
|
| 6 | 5 | fveq2d 6195 |
. . . . . . 7
|
| 7 | 6 | oveqd 6667 |
. . . . . 6
|
| 8 | 7 | fveq1d 6193 |
. . . . 5
|
| 9 | 8 | fveq1d 6193 |
. . . 4
|
| 10 | eqid 2622 |
. . . . 5
| |
| 11 | yon11.b |
. . . . 5
| |
| 12 | 3 | oppccat 16382 |
. . . . . 6
|
| 13 | 2, 12 | syl 17 |
. . . . 5
|
| 14 | eqid 2622 |
. . . . . 6
| |
| 15 | fvex 6201 |
. . . . . . . 8
| |
| 16 | 15 | rnex 7100 |
. . . . . . 7
|
| 17 | 16 | a1i 11 |
. . . . . 6
|
| 18 | ssid 3624 |
. . . . . . 7
| |
| 19 | 18 | a1i 11 |
. . . . . 6
|
| 20 | 3, 4, 14, 2, 17, 19 | oppchofcl 16900 |
. . . . 5
|
| 21 | 3, 11 | oppcbas 16378 |
. . . . 5
|
| 22 | yon11.h |
. . . . 5
| |
| 23 | eqid 2622 |
. . . . 5
| |
| 24 | yon11.p |
. . . . 5
| |
| 25 | yon11.z |
. . . . 5
| |
| 26 | yon2.f |
. . . . 5
| |
| 27 | eqid 2622 |
. . . . 5
| |
| 28 | yon12.w |
. . . . 5
| |
| 29 | 10, 11, 2, 13, 20, 21, 22, 23, 24, 25, 26, 27, 28 | curf2val 16870 |
. . . 4
|
| 30 | 9, 29 | eqtrd 2656 |
. . 3
|
| 31 | 30 | fveq1d 6193 |
. 2
|
| 32 | eqid 2622 |
. . 3
| |
| 33 | eqid 2622 |
. . 3
| |
| 34 | 22, 3 | oppchom 16375 |
. . . 4
|
| 35 | 26, 34 | syl6eleqr 2712 |
. . 3
|
| 36 | 21, 32, 23, 13, 28 | catidcl 16343 |
. . 3
|
| 37 | yon2.g |
. . . 4
| |
| 38 | 22, 3 | oppchom 16375 |
. . . 4
|
| 39 | 37, 38 | syl6eleqr 2712 |
. . 3
|
| 40 | 4, 13, 21, 32, 24, 28, 25, 28, 33, 35, 36, 39 | hof2 16897 |
. 2
|
| 41 | 21, 32, 23, 13, 24, 33, 28, 39 | catlid 16344 |
. . . 4
|
| 42 | 41 | oveq1d 6665 |
. . 3
|
| 43 | yon12.x |
. . . 4
| |
| 44 | 11, 43, 3, 25, 24, 28 | oppcco 16377 |
. . 3
|
| 45 | 42, 44 | eqtrd 2656 |
. 2
|
| 46 | 31, 40, 45 | 3eqtrd 2660 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-hom 15966 df-cco 15967 df-cat 16329 df-cid 16330 df-homf 16331 df-comf 16332 df-oppc 16372 df-func 16518 df-setc 16726 df-xpc 16812 df-curf 16854 df-hof 16890 df-yon 16891 |
| This theorem is referenced by: yonedalem3b 16919 yonffthlem 16922 |
| Copyright terms: Public domain | W3C validator |